. Numerical analysis |

Root finding: Bisection method

Root finding: Newton-Raphson method
Interpolation

Curve fitting: Least square method
Curve fitting in MATLAB

Summary

o L~ wN =

Text

A. Gilat, MATLAB: An Introduction with Applications, 4th ed., Wiley

ME 349, Engineering Analysis, Alexey Volkov

3.1. Root finding: Bisection method

» Formulation of the problem

Idea of the bisection method

MATLAB code of the bisection method

Root finding with build-in MATLAB function fzero

YV VYV VY

Reading assignment

Gilat 7.9, 9.1
http://en.wikipedia.org/wiki/Bisection_method

ME 349, Engineering Analysis, Alexey Volkov

3.1. Root finding: Bisection method

Problem statement
We need to find real roots x,, of an equation

flx) =0 (3.1.1)

in the interval a < x < b, where f(x) is the continuous function.
Root of Eg. (3.1.1) is the (real) number that turns this equation into identity.
In general, a non-linear equation can have arbitrary number of roots in a fixed interval (a, b).

Y y = f(x)
| RN /
. xwx* x*\/ X, b

Examples:
» Linear equation
px, =q, f(x) =px-q. Only one root x, = q/p.
» Quadratic equation
pxZ+qx,+r=0, f(x)=px*+qgx+r. CanhaveO,1,or?2 real roots.
» Transcendental equation

sinx, =a, f(x)=sinx-a. Multipleroots, Can not be solved algebraically.

ME 349, Engineering Analysis, Alexey Volkov 3

3.1. Root finding: Bisection method

Example: Roots finding in thermo-physical calculations
» The temperature dependence of the material properties is given by empirical equations.
The specific heat C (J/kg/K) as a function of temperature T (K) of some material:

C(T) = Cy + C,T + C,T? + C5T3

Then the specific internal (thermal) energy u (J/kg) at temperature T is
T
C C C
u(T) = j C(T)AT =CoT + —T2? +=T3 + T4

2 3 4
0

Let's assume that

1. We consider some body of that material of mass M (kg)

with initial temperature T;. Then the thermal energy of Mu(Ty)

that body is equal to

U, = Mu(T) Heating
2. We heat the body by a laser and add energy AQ (J). i i ¢ ¢ i
3. What is the body temperature T, after heating? +AQ

In order to answer this question we must find a root T,

of the equation:
) =t + ¢ ucr + ¢

ME 349, Engineering Analysis, Alexey Volkov

3.1. Root finding: Bisection method

Algebraic solution x, is:
» An equation (formula) that defines the root of the equation f(x,) = 0.
» An accurate solution.

Numerical solution x, pym):
» A numerical value which turns equation f(x,) = 0 into identity.

» An approximate solution. It means that f (X, um)) # 0, but |f(x*(num))| is small.

y
Iterations flx) =
@ X
Xx(1) Xx(2) Xx(3)

The numerical methods for root finding of non-linear equations usually use iterations for
successive approach to the root:

We find Xi(1)r Xx(2)r Xx(3)r ==+ - such that Xa(i) = Xop 1€ & =

x*(i) — X 0.
After finite number of iterations, we will be able to find the root with finite numerical error ¢;.

ME 349, Engineering Analysis, Alexey Volkov

3.1. Root finding: Bisection method

Bisection method
» Let's assume that we localize a single root in an interval (a, b) and f(x) changes sign in the
root. If the interval (a, b) contains one root of the equation, then f(a)f(b) < 0.
» Let's iteratively shorten the interval by bisections until the root will be localized in the
sufficiently short interval. For every bisection at the central point c = (a + b)/2, we replace
either a or b by c providing f(a)f(b) < 0 after the replacement.

f(a) ~——-y: y = f(x) f@f®d)<0
Bisection point:
¢ ' x
a : ag

One iteration of the bisection method:

1. Assume the root is localized in the interval a; < x < b;.

2. Calculate middle point ¢; = (a; + b;)/2. This is the i*" approximation to the root x,(;+1) = ¢;.
3.1f b; — a; < g, then stop iterations. The root is found with tolerance «.

4.1f f(a;)f(c) < O0thena;y; = a;, bjy1 = cora;y1 = ¢, bj;1 = b; otherwise.

ME 349, Engineering Analysis, Alexey Volkov 6

3.1. Root finding: Bisection method

MATLAB code for the bisection method

Example: Solving equation sinx = 1/2.
function [x, N] = Bisection (a, b, Tol)
N=0;
fa = Equation (a) ;
while b — a > Tol
c=05*(a+b);
fc = Equation (c) ;

iffa*fc>0
a=gc
else
b=c;
end
N=N+1;
end
=

function f = Equation (x)
f=sin(x)-0.5;
end

Notes:

1. Calculation of f(x) is the most computationally
"expensive" part of the algorithm. It is important to
calculate f(x) only once per pass of the loop.

2. Advantage of the bisection method: If we are
able to localize a single root, the method allows us
to find the root of an equation with any continuous
f (x) that changes its sign in the root. No any other
restrictions applied.

3. Disadvantage of the bisection method: It is a
slow method. Finding the root with small tolerance
€ requires a large number N of bisections. Example:
Let's assume Ax =b—a =1, € = 1078, Then the
N can be found from equation € = Ax/2":

log(Ax/g) log10®
= = ~ 27
log 2 log 2

3.1. Root finding: Bisection method

Summary on root finding with build-in MATLAB function fzero
The MATLAB build-in function fzero allows one to find a root of a nonlinear equation:

LHS of equation

x = fzero (@fun, x0)

Initial approximation

1 1
sin(x)zz = f(x) =sinx —§=O

Example:

function[f] =fun(x)
f=sin(x)—0.5;
end

x = fzero (@fun, 0.01)

ME 349, Engineering Analysis, Alexey Volkov

3.1. Root finding: Bisection method

» The MATLAB build-in function fzero allows one to find a root of a nonlinear equation:
v' x = fzero (@fun, x0).
v' fun is the (user-defined) function that calculates the LHS f(x) of the equation.
v’ x0 can be either a single real value or a vector of two values.

» If x0 is a single real number, then it is used as the initial approximation to the root. In this
case the fzero function automatically finds another boundary of the interval x1 such that
f(x1) * f(x0) < 0 and then iteratively shrinks that interval.

» If x0 is a vector of two numbers, then x0(1) and x0(1) are used as the boundaries of the
interval, where the root is localized, such that f(x0(1)) * f (x0(2)) < O.

A\

The function works only if f(x) changes its sign in the root (not applicable for f(x) = x?).

» The function utilizes a complex algorithm based on a combination of the bisection, secant,
and inverse quadratic interpolation methods.

» Example: Roots of equation sin(x) = %

function [f] = SinEq (x)
f=sin(x)—-0.5;
end

x = fzero (@SinEq, [0, pi/2])
x = fzero (@SinEq, 0.01)

ME 349, Engineering Analysis, Alexey Volkov 9

3.2. Root finding: Newton-Raphson method

» |dea of Newton-Raphson method: Linearization

Graphical form of the root finding with Newton-Raphson method
Examples: When Newton-Raphson method does not work
MATLAB code for Newton-Raphson method

MATLAB function function

YV V VYV V

Reading assighnment

http://en.wikipedia.org/wiki/Newton's_method
Gilat 7.9, 9.1

ME 349, Engineering Analysis, Alexey Volkov 10

3.2. Root finding: Newton-Raphson method

Problem statement
We need to find a real root x, of a non-linear equation

(3.2.1) f(x,) =0 A i 7 A

Differentiable function

inan a < x < b interval, where f(x) is the differentiable
)] . L >
function with continuous derivative f'(x). / x /

ot
(=]

Newton-Raphson method f f

P
» In the framework of Newton-Raphson (Newton's) /\ P
method we start calculations from some initial ——F _x >
approximation for the root, x,(;), and then iteratively
increase the accuracy of this approximation, i.e. A
successively calculate X(2)r Xx(3)r -o- - such that P /

Xa(i) = Xa and g; = Xe(i) — x*| - 0.

Y

» In order to find the next approximation to the root,
X«(i), based on the previous approximation, x._1), we
use the idea of linearization: For one iteration, we
replace non-linear Eq. (3.2.1) by a linear equation that is
as close to Eqg. (3.2.1) as possible.

5

All other functions in this
example are not differentiable
if (a, b) includes point P

ME 349, Engineering Analysis, Alexey Volkov 11

3.2. Root finding: Newton-Raphson method

» Linearization is based on the Taylor series. The Taylor series is the approximation of f(x) in a
vicinity of point x = a by a polynomial:

fxX)=f(a)+ f'(a)(x —a)+ %f”(a)(x —a)?+ -

» Let's apply the Taylor series in order to find X.(i) based on x,(;_1), i.e. represent f(x) in Eq.
(3.2.1) in the form of the Taylor series at x = x,(;) and a@ = Xx.(;_1)

’ Iteration fe) =0 :-\I/\?:?Sczai‘rt::c?only
® X linear terms)
A= Xui—1) X = Xu(i) — y=f() /
1
f(xeimn) + ' (=) () = Xeimn) + 5" (B =0
» then drop all non-linear terms

f(x*(i—l)) + f’(x*(i—l))(x*(i) — x*(i—l)) =0 (322)

» and use this equation to find the next approximation to the root:

f(x-n) (3.2.3)
f'(xui-)

Xe(@) = Xa(i-1) ~

ME 349, Engineering Analysis, Alexey Volkov 12

3.2. Root finding: Newton-Raphson method

Graphical representation of the Newton-Raphson method

» The plot of the function y = f(x*(i_l)) + f’(x*(i_l))(x — x*(i_l)) is the straight line that is
tangent to the plot of the function f () in the point x,;_1).

» When we find the root of Eq. (3.2.2), we find a point, where the tangent crosses the axis Ox.

» The iterative process of Newton-Raphson method can be graphically represented as follows:

flrw)

y = (@) + (@) = X))

\

\ X
Xe(1) Xx(2) Xx(3) X«
» Advantages of Newton-Raphson method:

» ltis the fast method. Usually only a few iterations are required to obtain the root.
» It can be generalized for systems of non-linear equations.

ME 349, Engineering Analysis, Alexey Volkov 13

3.2. Root finding: Newton-Raphson method

» Disadvantage of the Newton-Raphson method: There are lot of situations, when the method
does not work. Conditions that guarantee the convergence of Xi(1)r Xx(2)s - 1O X, , i€

X«(i) — X«| = 0, are complicated. Roughly, the Newton-Raphson method converges if

» In some interval around the root x,, f(x) has the first and second derivatives (first
derivative is continuous), f'(x) # 0, f"'(x) is finite.

Example: f(x) = 3/x is the function that does not satisfy these properties and the root
of equation 3/x = 0 can not be find with the Newton-Raphson method.

» Initial approximation, X«(1), Is chosen to be "sufficiently close" to the root x,.

4
Examples: Newton-Raphson method does not work when the

()

initial point is too "far" from the root or enters a cycle

y 1
_ fx)

Xe(2) Xe(1)

ME 349, Engineering Analysis, Alexey Volkov 14

3.2. Root finding: Newton-Raphson method

MATLAB code for Newton-Raphson method

Example: Solving equation sinx = 1/2.

function [x, N] = NewtonMethod (a, Tol) Notes:

N=0;

s

[f, dfdx] = Equation (x) ;
while abs (f) > Tol

x=x-f/dfdx;
[f, dfdx] = Equation (x) ;
N=N+1;

end

end

function [f, dfdx] = Equation (x)
f=sin(x)—-0.5;
dfdx =cos (x);

end

1. Calculation of f(x) and f'(x) is the most
computationally "expensive" part of the algorithm.
It is important to calculate f(x) and f'(x) only
once per pass of the loop.

2. Disadvantage of the current version of the code:
For solving different equations we need to prepare
different versions of the NewtonMethod function.
They will be different only by the name of the
function (Equation) that calculates f(x) and f'(x).
We can make NewtonMethod universal (capable of
solving different equations) by programming the
MATLAB function function.

> Only 3 iterations is necessary to get the root with tolerance € = 1078,

ME 349, Engineering Analysis, Alexey Volkov

15

3.2. Root finding: Newton-Raphson method

MATLAB function function
» Function function is a function that accepts the name of another function as an input
argument.
» Definition of the function function:
function [...] = Function1 (Fun,) : Here Fun the name of input function argument

» Use of the function function :
[...] =Functionl (@Funl, ...) : Here Fun1l is the name of a MATLAB function

MATLAB code for the Newton-Raphson method based on function function

File NewtonMethodFF.m File SinEq.m
function [f, dfdx] = SinEq (x)
function [x, N] = NewtonMethodFF (Eq, a, Tol) f=sin(x)-0.5;
N=0; dfdx =cos (x);
X =a; end

[f,dfdx] =Eq(x);

while abs (f) > Tol
x=x-f/dfdx: In the MATLAB command window:

[f, dfdx]=Eq (x): [x, N] = NewtonMethodFF (@SinEq, 0.01, 1e-08)

N=N+1;
end
end

ME 349, Engineering Analysis, Alexey Volkov 16

3.3. Interpolation

» Interpolation problem

Reduction of the interpolation problem to the solution of a SLE
Polynomial interpolation

YV VYV VY

Example: Interpolations of smooth and non-smooth data

Reading assignment

ME 349, Engineering Analysis, Alexey Volkov

17

3.3. Interpolation

Interpolation problem

Let's assume that a functional dependence between two variables x and y is given in the
tabulated form: We know values of the function, y; = y(x;), for some discrete values of the
argument x;, i =1, .

m--_--_-- .31

Vi Yi+1
Such tabulated data can be produced in experiments. Example: x =t is time and y =T s
temperature, in the experiment we measure the temperature T; at a discrete times t;.

We are interested in the question : How can we predict the values of the function y(x) (and its
derivatives y’'(x), etc.) at arbitrary x which does not coincide with any of x;?

There are two major of approaches to introduce y(x) based on tabulated data in the form
(3.3.1). We will consider two major methods:

1. Interpolation.

2. Fitting (will be considered later).

Interpolation implies that we introduce a continuous interpolation function f(x) such that
fx) =y, i=1,..,N. (3.3.2)

This means that the interpolation function goes through every point (x;, y;) on the plane (x, y).

ME 349, Engineering Analysis, Alexey Volkov 18

3.3. Interpolation

Interpolation function f(x)

- i

Interpolationinx @ Extrapolationin x
Interpolation interval (a, b)

» We assume that all x; are given in ascending order: x;_; < x;

» Interpolation is the process of constructing of new data pointswithintheobservation interval:

X1 < x < xpy: y = f(x) is the interpolated value of the function
» Extrapolation is the process of constructing of new data points beyond the observation
interval:
X <Xp0rx > xy: y = f(x) is the extrapolated value of the function

» Both interpolation and extrapolation can be performed only approximately, but extrapolation
is subject to greater uncertainty and higher risk of producing meaningless results.

ME 349, Engineering Analysis, Alexey Volkov 19

3.3. Interpolation

Solution of the interpolation problem
» Let's introduce a system of N known functions

fi(x), fL(x), f3(x), falx), ...

Usually these functions are assumed to be smooth(have continuous derivatives of any order).
» Now, let's look for the interpolation function in the following form:

N
FOO) = QAR + Cofy00 + -+ Cufa () =) Cifi(0) (3.3.3)
i=1

where C; are unknown coefficients. In order to be an interpolation function, f(x) should
satisfy conditions (3.3.2), i.e.

C1f1(x1) + Cofo(x1) + -+ Cyfn(x1) = ¥4
C1f1(x2) + Cofo(xz) + -+ Cnfn(x2) = 3 (3.3.4)

Cifi(xn) + Cofo(xy) + -+ Cyfn(xn) = yn
» Egs. (3.3.4) is the linear system of N equations with respect to N coefficients C; . It can be
rewritten in the matrix form as follows:

f1(?51) fN(.xl) [61
fiGw) o fulon) Vn

Thus solution of the interpolation problem reduces to solution of a SLE.

V1
: (3.3.5)

Cn

3.3. Interpolation

The interpolation function in the form
f(.X') = ClxN_l + -+ CN_ZXZ + CN—lx + CN (336)
is called the interpolation polynomial.

» In order to find the interpolation polynomial one needs to solve the SLE given by Egs. (3.3.5):

L@ =XV K@ =2V L, faa@=x fy@ =1 (337)

Eq.(3.3.5) = ;] l (3.3.8)

Elements of the matrix of coefficients A are equal to a;; = x

» If the interpolation data includes N points (x;,y;) , then we can find the interpolation
polynomial of degree N — 1.

» The chosen order of functions in Egs. (3.3.7) and (3.3.8) (C; is the coefficient at the highest
degree of x) allows us to use the MATLAB polyval function in order to calculate value of the
interpolation polynomial.

ME 349, Engineering Analysis, Alexey Volkov 21

3.3. Interpolation: General approach

Problem 3.3.1: Interpolation of various functions

File InterpolationProblem.m

function [C] = InterpolationProblem (x_i, y_i)
N =length (x_i);
A=zeros(N,N);
fori=1:N%iis the row index

forj=1:N%jis the column index
A(ij) = x_i(i)*(N-j);

end A

end
C=inv(A)*y_ i}

end

File Interpolation.m
function [C] = Interpolation (Fun, a, b, N, NN)
% Preparation of tabulated data
x_i =linspace (a, b, N);
y_i=arrayfun (Fun, x_i);
% Solving the interpolation problem
C = InterpolationProblem (x_i, y_i);

% Now we plot the function, interpolation polynomial, and data points

x = linspace (a, b, NN);
f = polyval (C, x); % Interpolation polynomial
y = arrayfun (Fun, x); % Original function
plot (x,y, 'r',x_i,y_i, 'bx', x, f,'g')

end

File Problem_3 3 1

C = Interpolation (@TriangleFun, -1, 3, 5, 101)

These functions can be used
to generate data points:

File PolyFun.m
function [y] = PolyFun (x)
Coeff=[123];
y = polyval (Coeff, x) ;
end

File SinFun.m

function [y] = SinFun (x)
y=sin(pi*x/2);

end

File TriangleFun.m
function [y] = TriangleFun (x)
ifx<0
y=0;
elseif x< 1
Yy=X,
elseif x < 2
N 2%
else
y=0;
end
end

ME 349, Engineering Analysis, Alexey Volkov

22

3.3. Interpolation

Example 1: Smooth datay = sin(mx/2), N is the number of interpolation points

A. Symmetric interpolation interval (-1,1)
1 T T T T T T T . : 1 : ; : . oo 155
Z: N = 3 Z: N = 10 >< 1 N = 20 S
aar . 0.4t ; 7 x_.-x
Interpolation ber X
02t) 02t X X
.l polynomial il ol =
a2} Py 0z} oo
a4l \ oal 0&+ & x""x
X ol
a6} s 061 7 e
o8l Original function 08} P
) = 05 05 04 02 0 02 04 06 08 1 " Dg 06 04 D02 0 02 04 06 08 1T 05 08 04 02 0 02 04 06 08 1
B. Non-symmetric interpolation interval (0.5, 1)
e N = 095} N =10 I ~ e N=1 5
«-"x' 16F
09t G 0ot
4l x 14}
nesf / nest P4
/ v 12}
naf / sl : P
f'. !x,"'
orsl f 075/
(_;.'v <

D 1 1 1 1 1 1 1 1 1
05 08 0B 0B 0OF 075 08 083 09 0595

1

D. 1 1 1 1 1 1 1 1 1
05 08 06 0B 07 075 08 08 08 085

1 1 1 1 1 1 1 1 1
05 058 06 0B 07 075 08 085 08 085 1

» In general, it is difficult to build and calculate interpolation polynomials at large N (>10-20)
due to strong enhancement of round-off errors. We are limited by small N!

ME 349, Engineering Analysis, Alexey Volkov

23

3.3. Interpolation

Example 2: Non-smooth data in the form of a triangle pulse

Symmetric interpolation interval (-1,3)

1 T T T

0Bf N =

0GB

04F

02r

D’.‘—,—".
\ /

a2

N gt I I 1 I 1
-1 -0.8 0 0.8 1 1.4 2

e et

-1

}'--:.I 1 1 1 1 1
-1 0.5 0 0a 1 1.4 2

Y,
25

3

1.2

» For non-smooth data, an increase
in the number of data points N
(and degree of the polynomial)
can deteriorate the accuracy.

» The values of the interpolation
polynomial for non-smooth data
are subject to "oscillations."

ME 349, Engineering Analysis, Alexey Volkov

24

3.4. Curve fitting: Least square method

» Fitting problem
When is interpolation not a viable approach?
Least square method: General approach

YV VYV VY

Least square method: Polynomial fitting

Reading assignment
Gilat 8.2, 8.4, 8.5

ME 349, Engineering Analysis, Alexey Volkov

25

3.4. Curve fitting: Least square method

Curve fitting is the process of constructing a curve, or mathematical function, that has the best
fit to a series of discrete data points.

P Fitting function f(x, Cy,C,) = C; + Cox

Data interval (a, b)

Curve fitting implies that

1. We choose a form of the fitting function (e.g. linear fitting function f(x, Cy,C,) = C; + C,x)
with some number of unknown coefficients (C;,C5). In general, the choice of the fitting
function is arbitrary and the number of unknown coefficients is much smaller than the
number N of data points.

2. We introduce a measure of difference, R, between the data points (x;, y;) and the fitting
function f(x).

3. We find such unknown coefficients (Cy, C5) that allow us to minimize the value of R.

ME 349, Engineering Analysis, Alexey Volkov 26

3.4. Curve fitting: Least square method

Data point

’.__"\
/’ | \\
/ l N

—L ° Fitting function f(x, C;,C,) = C; + Cyx,
/ : | 7

Data interval (a, b) . Interpolation function

Curve fitting is an alternative to interpolation.
Difference between interpolation and fitting functions:

» Interpolation function passes precisely through every data point.
Fitting function goes closely to data points and follows the general trend in data behavior.

» Interpolation function has N coefficients, where N is the number of data points.
Fitting function has M coefficients, usually M << N.

ME 349, Engineering Analysis, Alexey Volkov

27

3.4. Curve fitting: Least square method

» Curve fitting can (and must!) be used instead of interpolation if

v' There are too many data points in order to build an interpolating function (N > ~10).

v" Input data are noisy.

v We are interested in revealing general trends in the data behavior (Curve fitting can
be used as a tool for data analysis).

Example: Fitting vs. interpolation of noisy data (see solution in FittingVsinterpolation.m)
Data points are given by the law y(x) = 1 + 2x + random noise

34 T T T T T T T T T 12

;| Fitting function
f(x) =118+ 1.93x

258}

158+

o
o

1 Interpolation
polynomial of degree N

DE | 1 1 | 1 1 | 1 1
1] 0.1 0.2 03 04 0os 06 07 0g 09 1

ME 349, Engineering Analysis, Alexey Volkov 28

3.4. Curve fitting: Least square method

Least square method: General idea
Least square method for finding coefficients of fitting functions is based on the general
conditions that allow one to find a minimum of a function

Minimum of a function f (x) Minimum of a function f (x,y)
af af
\
of
X @ (Xmin» Ymin) = 0
Xmin

In the least square method, the same conditions of a minimum are applied to the mean-square
difference R between the fitting function and tabulated data.

Fitting function f(x, Cy,C,) Example: Fitting function with two coefficients:

Y N
1
s R(C1,C) =) (fxi,Cu,Cr) = 9)?
fx3) i=1
Conditions of minimum of R(Cy, C,) :
orR 0 orR "
l . ac, aC,
X1 Xo X3 X4 X These are two equations with respect to C; and C,

ME 349, Engineering Analysis, Alexey Volkov 29

3.4. Curve fitting: Least square method

Least square method: Polynomial fitting
» Assume that we have N data points (x,vx), k= 1,..,N.
» Consider the fitting function in the form of a polynomial of degree M (M <« N)
M

f(x) == f(x, Cli Cz, . CM) = ClxM_l e CM_zxz + CM_lx + CM = z ijM_j (341)
j=1
» Introduce the mean square difference R
1 N
R(Cy,Cy, .., Cy) = N z(f(xk) — Yi)?
k=1
» Apply conditions of a minimum of R(Cy, C,,..,Cy) :
dR of .
—==0 = E(ﬂxk) Y056 () =0, i=1,..,M
dC;
f M—i —i —i
Eg. (3.4.1) =>—(xk) =xpy > xk fx) =) yxnt, (3.4.2)
N) M _N
Zx ‘z(,}x = zykx,f’_‘
k=1 j=1 k=1

ME 349, Engineering Analysis, Alexey Volkov 30

3.5. Curve fitting: Least square method

M /N N
Vi
N Dl N7
j=1 \k=1 k=1
air o am][Cy b4
j=1 ayr 0 aumllCy by

Eq. (3.4.3) is the SLE with respect to coefficients Cy, C,,.., Cy, where the matrix of coefficients
and the RHS are

N

N
ajj = Z X,iM_(Hj)) b; = Z ykx,’f"i. (3.4.4)

k=1 k=1

Solution of the polynomial fitting problem reduces to a SLE given by Eqg. (3.4.3) with respect to
unknown coefficients C; (i = 1,.., M) of the fitting polynomial.

Once coefficients are found, values of the fitting polynomial can be calculated with the MATLAB
polyval function.

ME 349, Engineering Analysis, Alexey Volkov 31

3.5. Curve fitting in MATLAB

» Polynomial curve fitting with the MATLAB build-in functions
Other fitting functions

Data analysis based on the curve fitting

MATLAB basic fitting interface

V VYV VY

Reading assignment
Gilat 8.2, 8.4, 8.5

ME 349, Engineering Analysis, Alexey Volkov

32

3.5. Curve fitting in MATLAB
Least square method: Polynomial fitting in the MATLAB

» Assume that we have N data points (x,vx), k=1,..,N.
» Consider the fitting polynomial of degree K =M —1 (M K N)
f(x) = f(x, Cl' Cz,.., CM) = ClxM_l T CM_zxz + CM_lx + CM

» In the MATLAB, coefficients of the fitting polynomial, C;, C,,.., Cy, can be calculated with

the build-in polyfit function.
» This function implements the solution of the SLE given by Eq. (3.4.3).

» Syntax:
C = polyfit (x_i, y_i, K)
X_i(=[1:N])isalD array of x-coordinates of the data points
y_i(=[1:N])isa 1D array of y-coordinates of the data points
K= M-1 is the degree of the fitting polynomial
C=[C[1], C[2], ..., C[M]] is an array of M coefficients of the fitting polynomial

f = polyval (C, x) can be used in order to calculate the value of the fitting polynomial

ME 349, Engineering Analysis, Alexey Volkov

33

3.5. Curve fitting in MATLAB

Problem 3.5.1: Fitting of polynomial data. Initial data points are obtained with the polynomial
y(x)=(x—-01)(x—-04)(x —0.75)(x — 0.8)(x — 0.9) intheinterval [0,1]at N = 10.

File Fitting.m

function [C] = Fitting (Fun, a, b, N, K, NN)
% Preparation of tabulated data
X_i=linspace(a, b, N);
y_i=arrayfun (Fun, x_i);
% Solving the fitting problem
C=polyfit (x_i,y_i, K);
% Now we plot the function, fitting polynomial, and data points
x = linspace (a, b, NN);
f = polyval (C, x); % Fitting polynomial
y = arrayfun (Fun, x); % Original function
plot-tx, v e vk ibxi oG figh)

end

File PolyFun.m

function [y] = PolyFun (x)
y=(x-0.1)*(x-04)*(x-0.75)*(x-0.8)*(x-0.9);

end

File Problem 3 5 1.m
C = Fitting (@PolyFun, 0.0, 1.0, 10, 3, 101)

ME 349, Engineering Analysis, Alexey Volkov

3.5. Curve fitting in MATLAB

Solution of problem 3.5.1:

0.005

00050 [
001}

-0.015 -

0.1 2 03 04 05 0B 07 08 08 1

_0025 1 1 1 1 1 1 1 1 1
a 0.1 0z 03 04 0s 08 07 08 09 1

-0.005 -

00sH

0005k .

ool other here, N> K =5 T

_0025 1 1 1 1 1 1 1 1 1
0

0.005

0.01F

0.02

| Fitting, interpolation, and
.ml / original polynomials of
| degree 5 coincide with each

—D.D2> K = 5 b

01 0.2 03 04 0s 0B 07 g 0% 1

ME 349, Engineering Analysis, Alexey Volkov

3.5. Curve fitting in MATLAB

Curve fitting with functions other than polynomials

» Theoretically, any function can be used to model data within some short range of x.
» For a given problem, some particular function provide a better fit than others (better fit in a
broader range of x).

» The choice of the fitting function for the experimental data points is often based on
preliminary theoretical consideration of scaling laws governing the dependence y = y(x).

» Curve fitting with power, exponential, logarithmic, and reciprocal functions are of particular
importance since these functions often occur in science and engineering

f =bx™ : Power function
. . Any such function has only
— hoMx .
f = be : Exponential function two fitting parameters
f=b+mlogx : Logarithmic function (“coefficients"): b and m
f=1/(b+ mx) : Reciprocal function

» Fitting with these functions can be reduced to fitting with a polynomial of the first degree
and, thus, can be performed with the polyfit function.

ME 349, Engineering Analysis, Alexey Volkov 36

3.5. Curve fitting in MATLAB

» For this purpose, one needs to rewrite any of such functions in a form that can be fitted with
a linear polynomial:

logf =logb +mlogx :Power function : Linear relation between Inx and In f
logf =Inb+ mx : Exponential function : Linear relation between x and In f
f=b+mlogx : Logarithmic function : Linear relation between Inx and f
1/f =b+mx : Reciprocal function : Linear relation between x and 1/f

Then the fitting problem can be solved in three steps:

1. Transform tabulated data (x;,y;) to (t;,z;) such that for the chosen fitting function
relationship between t and z is linear.

Example: For the power fit, t; = logx;, z; = logy; .

2. Apply C = polyfit (t, z, 1) to (¢t;, z;) and obtain the coefficients C, and C; in the linear fitting
function for transformed data
z= Cit+ G,
logy =mlogx +loghb

3. Obtain coefficients m and b in the original fitting function

Example: For the power fit, m = C;,b = exp C,.

ME 349, Engineering Analysis, Alexey Volkov 37

3.5. Curve fitting in MATLAB

Problem 3.5.2: Fitting data with the power function: Data points are given by the equation
y = (1 + 2y/x)x? in the interval [0.1,10] at N = 10.

The part of the code that prepares coefficients of the fitting functions:

File PowerFitting.m

function [m1, b1] = PowerFitting (Fun, a, b, N, NN)
% Preparation of tabulated data
X_i=linspace(a, b, N);
y_i=arrayfun (Fun, x_i);
% Solving the fitting problem
C=polyfit (log (x_i), log(y_i), 1);
% Coefficients of the power fitting function
m1 = C(1);
bl =exp (C(2));
% Now we plot the function, power fitting function, and
x = linspace (a, b, NN);
f=bl * x.*m1; % Power fitting function
y = arrayfun (Fun, x); % Original function
loglog (x,y, 'r', x_i,y_i, 'bx', x, f, 'g')

end

File QuasiPowerFun.m

function [y] = QuasiPowerFun (x)
v (1+70 "sartix]) x 2

end

File Problem_3_5 2.m

[m1, bl] = PowerFitting (@QuasiPowerFun, 0.1, 10.0, 10,

Results in the double logarithmic scale

: Power fitting function
 f(x) = bx™

Fitting polynomial
of degree 3 (K = 3)

10

101)

ME 349, Engineering Analysis, Alexey Volkov

38

3.5. Curve fitting in MATLAB
Data analysis based on the curve fitting

» "Basic" fitting functions (linear, power, exponential, logarithmic, and reciprocal) are specific for many
engineering problems since many fundamental physical laws are described in terms of these functions.

» We can visually judge about the best shape of the fitting function by plotting data in different scales
(normal, semi logarithmic, double logarithmic) or by plotting reciprocal (1/y) data points.

log10 (Y) vs. log10 (X)

"Red" data follow to the
power scaling law

10'y

10 10" 10'

log10 (Y) vs. X

"Green" data follow to the |
exponential scaling law J

1 2 3 4 5 6 7 8 9 10

=)

IS

SN 2 - X w &~ o @ ~ @ ©
3 T T T T

)

Y vs. log10 (X)

logarithmic scaling law /x

. "Blue" data follow to th

7

£

1
8

L
9

10

» If the data points follow to one

of the "basic" functions (or
scaling laws), there will be a
scale type when the data
points fall on a line plot.

Four data sets are plotted
using different plot scales.

f =bx™
f =be™
f=b+mlnx

Inf=Inb+mlnx
Inf=Inb+ mx
f=b+mlnx

» See DataAnalysis.m

ME 349, Engineering Analysis, Alexey Volkov

39

3.5. Curve fitting in MATLAB

Basic fitting tool of the MATLAB figure window
» Fitting functions can be added to the MATLAB figure window by using the Basic fitting tool.

» For this purpose we need to do only two steps:
v Plot data points using plot, semilogx, semilogy, or loglog commands.
v In the opened figure window, go to menu Tools->Basic Fitting
» The Basic fitting panel allows us to
v' Add fitting functions to the figure window.
v See coefficients of fitting functions.
v’ Plot residuals.

» Similar interactive fitting tools are build in MS Excel and other data processing software.

ME 349, Engineering Analysis, Alexey Volkov 40

3.6. Summary

For the exam we must know how
» To implement and use the bisection method for finding roots of a non-linear equation.

» To implement and use the Newton-Raphson method for finding roots of a non-linear
equation.

» To use the build-in fzero function for finding roots of an individual non-linear equation.
» To find coefficients of an interpolation polynomial by solving a SLE.

» To understand the basic idea of the least square method and how to reduce the fitting
problem to the solution of a SLE.

Y

To use polyfit function in order to find coefficients of the fitting polynomial.

» To use polyfit function to fit data to power, exponential, logarithmic, and reciprocal
functions.

» To chose the best shape of the fitting function by changing plot scales.

