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ABSTRACT

The one-dimensional steady-state problem of thermal escape from a single-component atmosphere of mon- and
diatomic gases is studied in the hydrodynamic (blow-off) regime using the direct simulation Monte Carlo method
for an evaporative-type condition at the lower boundary. The simulations are performed for various depths into an
atmosphere, indicated by a Knudsen number, Kn0, equal to the ratio of the mean free path of molecules to the radial
position of the source surface, ranging from 10 to 10−5, and for the range of the source Jeans parameter, λ0, equal to
the ratio of gravitational and thermal energies, specific to blow-off. The results of kinetic simulations are compared
with the isentropic model (IM) and the Navier–Stokes model. It is shown that the IM can be simplified if formulated
in terms of the local Mach number and Jeans parameter. The simulations predict that at Kn0 < ∼10−3 the flow
includes a near-surface non-equilibrium Knudsen layer, a zone where the flow can be well approximated by the IM,
and a rarefied far field. The corresponding IM solutions, however, only approach Parker’s critical solution as λ0
approaches the upper limit for blow-off. The IM alone is not capable for predicting the flow and requires boundary
conditions at the top of the Knudsen layer. For small Kn0, the scaled escape rate and energy loss rate are found to
be independent of λ0. The simulation results can be scaled to any single-component atmosphere exhibiting blow-off
if the external heating above the lower boundary is negligible, in particular, to sublimation-driven atmospheres of
Kuiper belt objects.

Key word: planets and satellites: atmospheres

Online-only material: color figures

1. INTRODUCTION

The escape from a planetary atmosphere of molecules with
thermal energies greater than the gravitational binding energy is
referred to as thermal escape. Since the prediction of the escape
rates by the thermal and non-thermal processes determines the
long-term evolution of planetary atmospheres, it has long been
a subject of interest in the aeronomy of planetary objects in
our solar system (e.g., Johnson et al. 2008) and more recently
of interest in understanding the evolution of extrasolar planets
(e.g., Lammer et al. 2009). The particular feature that limits the
modeling effort is that escape occurs in a rarefied region of an
atmosphere, usually referred to as exosphere, where the gas flow
is essentially non-equilibrium. In this region, continuum models
break down so that molecular kinetic simulations are required to
accurately predict the atmospheric flow structure and the escape
rates (e.g., Lammer et al. 2008).

Two distinct regimes of thermal escape, namely, hydrody-
namic or blow-off and Jeans-like or evaporative regimes, can
take place in a planetary atmosphere depending on the Jeans
parameter, the ratio of the gravitational binding energy to the
thermal energy of a molecule (e.g., Johnson et al. 2008). We use
the words hydrodynamic escape and blow-off interchangeably
here, although some authors reserve the word hydrodynamic
for cases in which continuum models are applicable up to the
exobase (e.g., Tian 2009). Here we assume that the hydrody-
namic escape regime occurs if the value of the Jeans parameter
is sufficiently small, so that the total enthalpy of fluid parti-
cles is larger than the depth of the gravitational well and flow
accelerates to supersonic velocities inside the continuum part
of the atmosphere. In the Jeans-like regime, which occurs at
large Jeans parameters, the flow remains truly subsonic up to
the exobase and only the fraction of molecules in the tail of the

velocity distribution function is lost to escape. Although these
distinct regimes have been identified since pioneering works by
Chamberlain (1963) and Parker (1963), the ranges of condi-
tions specific to each regime have not been clearly understood.
In particular, hydrodynamic escape has been assumed to oc-
cur if the Jeans parameter at the exobase is smaller than ∼2
(e.g., Hunten 1982) or 1.5 (Öpik 1963; Lammer et al. 2008)
and the transition from the hydrodynamic to Jeans-like regime
occurs over a broad range of Jeans parameter. This gave rise
to so-called slow hydrodynamic escape models (Krasnopolsky
1999) based on Parker’s (1964a, 1964b) model for solar wind
and intended for description of the atmospheric flow in an inter-
mediate range of the Jeans parameter (e.g., Johnson et al. 2008).
Recently, Volkov et al. (2011a, 2011b) showed that the latter is
incorrect and the transition occurs over a narrow range of Jeans
parameter, the boundaries of which depend on the number of
degrees of freedom of gas molecules. For a monatomic gas in
which there is no heating above the lowest altitude modeled,
they found that the transition occurs when the Jeans parameter
at that altitude, i.e., at the source, is in the range 2–3.

This paper focuses on the consideration of the thermally
induced, hydrodynamic escape regime. In the solar system, such
flows are characteristic for outflows from surfaces of objects
with low gravity such as comet nuclei (Crifo et al. 2002;
Tenishev et al. 2008), early terrestrial atmospheres (Watson
et al. 1981; Zahnle & Kasting 1986; Hunten et al. 1987),
and atmospheres of the Kuiper belt objects (KBOs; Stern &
Trafton 2008; Levi & Podolak 2009, 2011). The aeronomy
of the extrasolar planets, in principle, appears to provide
large variety of hydrodynamically escaping outflows, since
stellar radiation can induce a transition to blow-off even in
atmospheres on massive Jupiter-type exoplanets. A transition
to blow-off has been predicted in multiple calculations of the
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atmospheric structures of the close-in exoplanets including
hydrogen atmospheres of hot Jupiters (Tian et al. 2005; Muñoz
2007; Penz et al. 2008; Murray-Clay et al. 2009; Koskinen et al.
2012) and also supported by results of spectral measurements
revealing the traces of heavy species in extended exoplanets’
atmospheres (Vidal-Madjar et al. 2003, 2004; Linsky et al.
2010).

Parker (1960, 1963) developed a theory of hydrodynamic
escape in a gravitational field based on the isentropic model
(IM) in which enthalpy and entropy along gas streamlines are
assumed to be constant. In his theory, the hydrodynamically
escaping flow starts from a subsonic velocity that monotonically
increases eventually becoming supersonic. He found that a
spherically symmetric isentropic flow corresponds to a critical
solution of the IM and is possible only in a polyatomic gas
for a limited range of Jeans parameter and is not possible in
a monatomic gas. One can argue then that there should be a
qualitative difference between outflows of mon- and polyatomic
gases in a gravitational field. It has also been argued that the
conditions of existence of Parker’s critical solution allow one to
constrain unknown conditions at the surface of a planetary body
exhibiting a hydrodynamically escaping outflow (e.g., Levi &
Podolak 2009).

Although Parker’s IM of the hydrodynamics escape is simple
and attractive, it does not appear to have been verified by
kinetic simulations of flow in a gravity field. In this paper,
we therefore attempt to verify assumptions of Parker’s theory
using the direct simulation Monte Carlo method (DSMC) and
to compare predictions based on the kinetic model, IM, and
full Navier–Stokes equations. Our simulations are performed
over a broad range of Knudsen numbers, the ratio of the mean
free path of gas molecules to the linear flow scale, covering
the whole range of flow conditions from continuum flows in
planetary atmospheres to almost free molecular outflows that
are relevant to collisionless atmospheres of certain asteroids
(Schläppi et al. 2008).

Our main finding is that the flows of mon- and diatomic gases
found in kinetic simulations are similar, contrary to expectations
based on Parker’s theory. At small Knudsen numbers at the
source, our DSMC simulations show that the flow of both
mon- and diatomic gases in the hydrodynamic escape regime
always contains a zone in which the flow structure can be
well approximated by the IM, but the corresponding solution
of the IM does not coincide with Parker’s critical solution. This
disagreement with Parker’s theory is explained by the formation
of a non-equilibrium Knudsen layer at the source surface. In
order to apply either the IM or full Navier–Stokes equations
for the flow in that zone, one must know the parameters at the
top of the Knudsen layer, and thus the IM alone is not able
to correctly predict the structure of hydrodynamically escaping
flows. The parameters at the lower boundary of the isentropic
flow zone can be provided by calculations based on kinetic
models. These parameters, including number and energy escape
rates, are obtained for the whole range of relevant Knudsen
numbers and Jeans parameters. It is also shown that the analysis
of the IM is significantly simplified if carried out in terms of
the local Mach number and Jeans parameter, an approach that
appears not to have been used in any previous study.

Since we do not consider atmospheric heating processes, the
results obtained in the present paper can be applied only to upper
parts of atmospheres, where heating by the stellar radiation or the
ambient plasma is either negligible or a small fraction of the net
upper atmospheric heating rate. This has been approximated in

the past by introducing the concept of an infinitely thin heated
layer (Watson et al. 1981), although the applicability of this
approach for hot Jupiters is questionable (Tian et al. 2005). We
believe, however, that the study of the general properties of
blow-off undertaken in the present paper results in the better
understanding of the limitations of Parker’s model, which is
mentioned in virtually every paper on the aeronomy of close-in
exoplanets.

The results of our simulations, on the other hand, can be
directly applied to the atmospheres of icy bodies populating, for
example, the Kuiper belt of the solar system. For instance, for
medium-sized KBOs with radii R0 below ∼200 km and surface
temperatures ∼30 K estimated from radiative equilibrium at
heliocentric distances of 50 AU, the most volatile species such
as N2, CO, and CH4 have the source Jeans parameter smaller
than 2 (Stern & Trafton 2008), which is below the critical Jeans
parameter for transition to Jeans-like escape found by Volkov
et al. (2011a, 2011b). For these conditions, the surface vapor
pressure varies from ∼10−8 Pa for CH4 to ∼10−3 Pa for N2
(Stern & Trafton 2008), which roughly corresponds to the mean
free path of gas molecules l0 ranging from 105 m to 1 m, or to
the range of Knudsen number, Kn0 = l0/R0, from 1 to 10−5,
which is fully considered in the present paper. The differences
between our simulations and previous attempts to describe the
KBO atmospheres based on Parker’s theory (Levi & Podolak
2009, 2011) are highlighted in Section 3.

The presence of a non-equilibrium Knudsen layer at the
surface of a body, evaporating into vacuum, of course, is a well-
known feature for flows at zero gravity (see, e.g., Cercignani
2000; Davidsson 2008 and references therein). It is known to
be important, for example, for near nucleus comet atmospheres,
which is one of the reasons why studies of flows in comet
atmospheres require kinetic simulations (Marov et al. 1996;
Crifo et al. 2002; Tenishev et al. 2008). For comets, however,
the effect of the gravitational field of a nucleus on the near
nucleus coma is negligible so that the flow is often governed by
the non-uniform thermal state over a rotating nucleus (Volkov
& Lukyanov 2007) and non-homogeneous composition of the
nucleus surface with distinct active zones (Combi et al. 2012).
Here, we focus on conditions for which the gravity has a non-
negligible effect on atmospheric blow-off. To the best of our
knowledge, this is the first study reporting the results of the direct
numerical calculations of the Knudsen layer in the presence of
a gravitational field.

2. MODELS OF THE THERMAL ESCAPE

2.1. Kinetic Model of Thermal Escape

The kinetic model of flow in a spherically symmetric neutral
atmosphere is described in detail elsewhere (Volkov et al. 2011b,
2013). In this section, therefore, only a brief description of the
model is provided.

In a kinetic approach, the flow in a neutral planetary atmo-
sphere is described in terms of a distribution function for the gas
molecules. The set of arguments for this function depends on
the adopted model of gas molecules and the flow symmetry. As-
suming a continuous distribution of energy of molecules with
internal degrees of freedom and one-dimensional, spherically
symmetric flow of a single component, the distribution function
f (r, v||, v⊥, εi, t) depends on time t , radial distance from the
planet center r , parallel v|| and perpendicular v⊥ components
of molecular velocities, and energy of internal degrees of free-
dom of an individual molecule εi . Any gas parameter, including
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number density n, gas velocity u, parallel T||, perpendicular T⊥,
and total T temperatures, temperature of the internal degrees of
freedom Ti , the number, Φn, and energy, Φe, escape rates can
be considered as a functional of f (r, v||, v⊥, εi, t) (Volkov et al.
2011b). In the kinetic theory, f (r, v||, v⊥, εi, t) should satisfy
a generalized Boltzmann equation (Ferziger & Kaper 1972).
Instead of solving this equation, in this paper we perform sim-
ulations with the DSMC method (Bird 1994) in which the gas
flow is represented by a large number of simulated molecules
whose motion is subject to a gravitational field and binary colli-
sions. This method is known to be a stochastic numerical method
for estimation of the functionals of solutions of the Boltzmann
kinetic equation (Wagner 1992).

In simulations, three models of gas molecules are considered:
the hard sphere (HS) model of a monatomic gas, when molecules
do not have internal degrees of freedom (number of internal de-
grees of freedom ζ = 0) and their differential cross section is
equal to σ = d2/4 (d is the molecular diameter); the pseudo-
Maxwellian (PM) model of a monatomic gas with the viscosity
index ω = 1 and ζ = 0 in which collisions are described by
the variable hard sphere model (Bird 1994) with differential
cross section σ = σrefcr,ref/cr (cr is the relative velocity for a
pair of colliding molecules and σrefcr,ref is the model parame-
ter); and the combined pseudo-Maxwellian–Larsen–Borgnakke
(PMLB2) model for a diatomic gas with two internal degrees of
freedom (ζ = 2), when the collision cross section is given
by the PM model and the energy transfer between transla-
tional and rotational degrees of freedom is described by the
Larsen–Borgnakke model (Borgnakke & Larsen 1975; Bird
1994). In the case of the PMLB2 model, the probability of
inelastic collisions (inverse collision number; see Bird 1994) is
assumed to be equal to 1.

In all simulations performed, with the exception those that are
described in Section 4, it is assumed that at the lower boundary of
the simulation region, the source surface, r = R0, all molecules
with v|| > 0 have a Maxwell–Boltzmann distribution with
given number density n0, zero net flow velocity u0 = 0, and
temperature T0, so that (Hinshelwood 1940; Bird 1994) for
v‖ > 0:

f (R0, v||, v⊥, εi, t) = f̃0t (v||, v⊥)f̃0i(εi), (1a)

where

f̃0t (v||, v⊥) = n0

(2πkT0/m)3/2
exp

(
−m

(
v2

|| + v2
⊥
)

2kT0

)
, (1b)

f̃0i(εi) = ε
ζ/2−1
i

(kT0)ζ/2Γ(ζ/2)
exp

(
− εi

kT0

)
, (1c)

(Γ(x) is the gamma-function, k is the Boltzmann constant,
and m is the mass of a molecule). Equations (1) are referred
to as evaporative-type boundary conditions, since they resem-
ble the Hertz–Knudsen model describing surface evaporation
(Cercignani 2000), when molecules returning to this surface are
assumed to be absorbed. The effects of the additional outflow
and heat flux at the source surface are considered in Section 4,
where Equation (1) are replaced by the velocity distribution in
first approximation of the Chapman–Enskog theory (Chapman
& Cowling 1970).

At the exit boundary, r = R1, it is assumed that all molecules
leaving the domain with hyperbolic trajectories (i.e., with v|| > 0
and v > ve(R1), where ve(r) = √

2GM/r is the escape velocity,

M is the mass of the planetary body, G is the gravitational
constant, and v =

√
v2

|| + v2
⊥), escape the atmosphere, while all

others return into the domain without collisions, so that

at v|| < 0: f (R1, v||, v⊥, εi, t)

=
{

f (R1,−v||, v⊥, εi, t), v < ve(R1)

0, v � ve(R1)
. (2)

For a fixed model of intermolecular collisions, the kinetic
problem in a reduced (non-dimensional) form contains two
governing parameters. These can be chosen to be the Knudsen
number Kn0 = l0/R0 and Jeans parameter λ0 = R0/H0 at the
source surface, where l0 is the mean free path of gas molecules
in equilibrium at given n0 and T0 (l0 = (

√
2πd2n0)−1 for

the HS model; l0 = √
8kT0/(πm)/(4πσrefcr,refn0) for the PM

� PMLB2 models (Bird 1994) and H0 = kT0R
2
0/(GMm) is

the atmospheric scale height calculated at the source surface
assuming barometric distribution of gas density (e.g., Johnson
et al. 2008). Since the present paper is intended to reveal
the general properties of kinetic and hydrodynamic models,
the computational results are given in their reduced form as
functions of λ0, Kn0, and the dimensionless distance ξ = r/R0.
This allows one to scale the results to an atmosphere of any
object with properties known at some physical surface or
a “surface” in the atmosphere. Volkov et al. (2011a) found
that hydrodynamic escape with the evaporative-type boundary
conditions in Equation (1) takes place for λ0 � λc1, where λc1
depends on the number of internal degrees of freedom ζ or the
ratio γ = cp/cV = (5 + ζ )/(3 + ζ ) of specific heats at constant
pressure, cp = (5 + ζ )(k/m), and volume, cV = (3 + ζ )(k/m).
The approximate boundary for the blow-off regime corresponds
to (Volkov et al. 2013)

λc = γ

2

γ + 1

γ − 1

T∗
T0

, (3)

where T∗ is the temperature at the sonic surface found for λ0 = 0
and Kn0 → 0. Equation (3) gives λc = 2.14 and λc = 3.17
for mon- and diatomic gases, while the DSMC simulations
result in only slightly smaller limiting values for the blow-
off range: λc1 = 2.1 and λc1 = 2.8 for mon- and diatomic
gases. For a diatomic gas, the value of λc1 predicted in the
DSMC simulations coincides with the low limit of the Jeans
parameter, λ0 = 2γ , of the applicability domain of Parker’s
isentropic theory; see Equation (19b) below. In the present paper,
the consideration of thermal escape is constrained by condition
λ0 < λc1.

In order to find a solution of the steady-state problem,
a DSMC simulation was started with empty computational
domain that eventually was filled by molecules moving upward
across the surface at r = R0 as described by the boundary
condition given by Equation (1). The steady state was assumed
to be reached when the number flux of gas molecules, 4πr2nu,
becomes constant (within the error 0.1%–1% depending on the
simulation conditions) throughout the computational domain.
The details of the numerical techniques, its implementation in
the thermal escape problem, and discussion of the choice of
numerical parameters, including the effect of the position of the
exit boundary are given elsewhere (Volkov et al. 2011c, 2013).

2.2. Hydrodynamic Model of Thermal Escape

The continuum gas flow in an atmosphere of a planetary body
can also be described using the full Navier–Stokes equations,
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e.g., Sedov (1997). Although only steady-state solutions are
of interest in this paper, it will be shown in Section 3.2 that
the steady-state formulation of the Navier–Stokes equations
is practically useless for simulating the blow-off, since its
solution is very sensitive to variations of Φn and Φe. In order to
understand this and to consider what boundary conditions are
necessary, we start with time-dependent equations and consider
the solution in the limit that t → ∞. These equations can be
written for a one-dimensional, spherically symmetric flow in a
gravitational field without external heating as (see, e.g., Volkov
et al. 2007)

∂ρ

∂t
+

∂(ρu)

∂r
+

2

r
ρu = 0, (4a)

ρ

(
∂u

∂t
+ u

∂u

∂r

)
= −∂p

∂r
+

∂τrr

∂r
+

2

r

2τrr − τθθ − τϕϕ

2
− GMρ

r2
,

(4b)

ρ

(
∂e

∂t
+ u

∂e

∂r

)
= −∂q

∂r
− (p − τrr )

∂u

∂r

− 2

r

[(
p − τrr +

2τrr − τθθ − τϕϕ

2

)
u + q

]
,

(4c)

where ρ = mn, p = ρkT /m, and e = cV T are the gas
mass density, pressure, and internal energy per unit volume,
q = −κ∂T /∂r is the heat flux described by the Fourier
law with thermal conductivity κ , and τrr , τθθ , and τϕϕ are
the diagonal components of Newton’s viscous stress tensor
written in spherical coordinates, τrr = (4/3)μ (∂u/∂r − u/r),
2τrr − τθθ − τϕϕ = 3τrr , and μ is the shear viscosity. In
the framework of the Chapmen–Enskog theory (Chapman &
Cowling 1970), Equation (4) together with Fourier’s heat flux
and Newton’s stress tensor can be thought of as a first-order
solution of the Boltzmann equation for a region of atmospheric
flow with small deviations from the local equilibrium and μ and
κ are functions of gas temperature and parameters of individual
molecules. In particular, for a monatomic gas, where collisions
between molecules are described by either HS (ω = 1/2)
or PM (ω = 1) model, μ and κ are given by power laws
(Bird 1994): μ = μref(T/Tref)ω and κ = (3/2)cpμ, where
μref = (5/16)m

√
kTref/(πm)/d2 and μref = kTref/(2πσrefcr,ref)

for the HS and PM models correspondingly, and Tref is a some
reference temperature that is further assumed to be equal to the
surface temperature T0 in Equation (1).

Equations (4a) and (4c) can be integrated and reduced to the
steady-state equations

mΦn = 4πr2ρu, (5a)

Φe = mΦn

(
cpT +

u2

2
− GM

r

)
+ 4πr2(q − τrru), (5b)

while the momentum equation (4b) reduces to

ρu
∂u

∂r
= −∂p

∂r
+

∂τrr

∂r
+

3τrr

r
− GMρ

r2
. (5c)

Equations (5a) and (5b) also represent the number and energy
escape rates in the kinetic model if all parameters in the right-
hand side of these equations are calculated according to their
kinetic definitions (Volkov et al. 2011b). In order to solve

Equation (5), one needs to impose five independent boundary
conditions. In a typical atmospheric flow problem, however, it
is often the case that only number density n0 and temperature T0
are known or can be estimated at the surface, so that boundary
conditions are

ρ(R0) = ρ0 = mn0, T (R0) = T0. (6)

Three remaining undefined parameters can be the number, Φn,
and energy, Φe, escape rates as recently discussed in describing
escape from Pluto’s atmosphere by Tucker et al. (2012) and
the velocity gradient at the surface (du/dr)0. Following Parker
(1964a, 1964b), one can neglect the viscosity and consider the
flow of an inviscid gas with non-zero thermal conductivity. Such
a model, referred to as the reduced Navier–Stokes model, does
not require knowledge of (du/dr)0, and only Φn and Φe need
to be specified.

One can obtain a solution to Equation (4) in the steady-
state limit accounting for the fact that blow-off is advection-
dominated, while the dissipative processes play only a secondary
role. Therefore, boundary conditions can be chosen based on the
analysis of characteristics for the corresponding Euler equations
obtained from Equation (4) at μ, κ = 0, when the number of
boundary conditions at every boundary is determined by the
direction of gas velocity u with respect to the boundary and by
the value of u with respect the sound speed, c = √

γ kT /m.
According to the characteristics-based analysis, one needs to
specify at a subsonic inflow boundary all flow parameters, ρ0,
u0, and T0, while at a supersonic outflow boundary no boundary
conditions are necessary (e.g., Fletcher 1991). Thus, assuming
that the outflow boundary at r = R1 is chosen in the region of
the supersonic flow, only one parameter, e.g., Φn, needs to be
specified in addition to Equation (6) in order to find a steady-
state solution to Equation (4).

A unique steady-state solution from Equation (4) in re-
duced units can be obtained by fixing γ , ω, λ0, the
Reynolds and Peclet numbers, Re0 = ρ0

√
kT0/mR0/μ0 and

Pe0 = cpρ0
√

kT0/mR0/κ0, and reduced escape rate ū0 =
u0/

√
kT0/m = Φn/(4πR2

0n0
√

kT0/m). Parameters ω and λ0
have their direct counterparts in the kinetic model of thermal
escape, γ is directly related to ζ , while Re0 and Pe0 can be
represented in terms of Kn0 and ū0, and Pe0 = Pr ·Re0, where
Pr = cpμ0/κ0 is the Prandtl number. Thus, in the blow-off
regime, the boundary conditions for the Navier–Stokes equa-
tions require that ū0 is specified, while in the kinetic model it
is obtained as a result of solving the problem. For a steady-
state problem based on the full Navier–Stokes model in the
form of Equation (5), Φ̄e = Φe/(ΦnkT0) and (dū/dr̄)0 =
(du/dr)0/(

√
kT0/m/R0) should be specified additionally, while

the reduced Navier–Stokes model does not require (du/dr)0. It
is also worth noting that actual values of surface parameters in
the kinetic model, ρ(R0), u(R0), and T (R0), are different from
the parameters ρ0, u0 = 0, and T0 in Equation (1) since the
non-equilibrium Knudsen layer is formed in kinetic simulations
at the source surface. Thus, in order to compare the kinetic and
continuum models with an identical boundary condition, one
must solve the continuum models, e.g., with initial or boundary
values of gas parameters that are found preliminary in corre-
sponding kinetic simulations.

2.3. Isentropic Model for Hydrodynamic Escape

Based on Equation (5) we reformulate Parker’s (1963) IM
for outflows in a gravitational field in terms of local Mach
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number, Ma = u/
√

γ kT /m, and local Jeans parameter, λ =
GMm/(kT r). We show that such a formulation has multiple
advantages with respect to exploring solutions in terms of gas
velocity and radial distance. The phase portraits of the IM on the
plane (Ma, 1/λ) will be then used for comparison with results
of kinetic simulation in Section 3.2.

In a steady state, Equations (5a) and (5b) reduce to

d

dr

(
cV ln

T

ργ−1

)
= PS, (7)

d

dr

(
cpT +

u2

2
− GM

r

)
= PH , (8)

where

PS = 1

T

[
PH − 1

ρ

(
dτrr

dr
+

3τrr

r

)]
, (9a)

and

PH = 1

mΦn

d

dr

[
4πr2(τrru − q)

]
(9b)

are the entropy and enthalpy production terms due to viscous
dissipation and thermal conductivity.

In the hydrodynamic escape regime, the effects of viscous
dissipation and thermal conductivity are presumably small, so
that the change of the gravitational energy with r in the left-
hand side of Equation (8) is counterbalanced by the change of
the enthalpy of fluid particles cpT + u2/2. One can then reduce
Equations (7) and (8) to the equations of the IM, where PS = 0
and PH = 0, and, thus, the entropy and enthalpy are independent
of r , i.e.,

T

ργ−1
= T0

ρ
γ−1
0

, (10)

cpT +
u2

2
− GM

r
= cpT0 +

u2
0

2
− GM

R0
. (11)

In this section, subscript “0” denotes the gas parameters at
an arbitrary reference level r = R0. The model given by
Equations (5a), (10), and (11) is essentially the IM that was
used by Parker (1963) for solar wind flows and then adopted by
others for the thermal escape of neutral species (e.g., Johnson
et al. 2008). Only three boundary conditions, ρ0, u0, and T0 at
r = R0, are needed for the IM model.

Equations (5a) and (10) imply that all the flow parameters
can be represented by power functions of a single “principal”
flow parameter and r . For instance, in order to describe the
flow in terms of the Mach number Ma and use it as a
principal parameter, then density, velocity, and temperature can
be represented as follows:

ρ

ρ0
=

(
Ma0

Ma

)2/(γ +1)

ξ−4/(γ +1), (12a)

u

u0
=

(
Ma

Ma0

)2/(γ +1)

ξ−2γ /(γ +1), (12b)

T

T0
=

(
Ma0

Ma

)2(γ−1)/(γ +1)

ξ−4(γ−1)/(γ +1), (12c)

where ξ = r/R0. By inserting Equation (12) into the differenti-
ated Equation (11), one can find that

dMa

dξ
= Ma

(1 − Ma2)ξ

(
λ

γ + 1

2γ
− 2 − (γ − 1)Ma2

)
, (13)

where the local Jeans parameter is defined as

λ = λ0

(
Ma

Ma0

)2(γ−1)/(γ +1)

ξ−(5−3γ )/(γ +1). (14)

In order to solve Equations (13) and (14), one must impose the
initial condition Ma∗ = Ma(ξ∗) of the Cauchy problem and
the initial value of the Jeans parameter λ∗ = λ(ξ∗) at some
point ξ = ξ∗. The only solutions that cannot be found in that
way are those solutions that go through the critical point C with
ξ = ξC , where Ma = 1 and the numerator and denominator
of the right-hand side of Equation (13) simultaneously become
zero and, thus, λ = λC = 2γ . The position of the critical
point ξC is not limited by Equation (13) and is defined by
conditions at the reference point. In particular, for convenience
one can choose the reference point r = R0 to be coincident
with the critical point, i.e., ξC = 1. Four branches of the critical
solution converge at the critical point, namely, two subsonic
branches (Ma < 1) and two supersonic branches (Ma > 1).
The slopes of these branches at the critical point are given by the
equation

dMa

dξ

∣∣∣∣
ξC=1

= ±
√

3

2

(
5

3
− γ

)
. (15)

In the case of a monatomic gas with γ = 5/3, Equation (15)
reduces to dMa/dξ = 0, every pair of sub- and supersonic
branches degenerates into a single branch, and Equation (13)
has no true critical point and critical solutions. In this case,
however, we use the terms “critical point” and “critical solution”
in order to denote limit critical point and solution found at
γ → 5/3. The sign of derivative dMa/dξ > 0 does not change
along each branch of the critical solution, so that at γ < 5/3
a pair of branches with dMa/dξ > 0 form a critical solution
that corresponds to a flow with the Mach number continuously
increasing from infinitely small to infinitely large values. Thus,
the inclusion of gravity results in a transonic, isentropic solution
with dMa/dξ > 0 in the flow with monotonically expanding
cross section A = 4πr2. By contrast, at zero gravity, as it is
well known from nozzle flow studies, an isentropic flow with
dMa/dξ > 0 and dA/dξ > 0 is possible only starting at
Ma � 1 (Zucker & Biblarz 2002).

Since the initial Jeans parameter λ0 can be chosen arbi-
trarily, an infinite number of solutions can pass through any
point (Ma0, ξ0) on the plane (Ma, ξ ). This remains true for
any principal parameter considered as function of ξ . In partic-
ular, in the approach developed by Parker (1960, 1963), who
analyzed the topology of solutions of the IM on the plane
(u/

√
2kT0/m, ξ ), an infinite number of solutions can inter-

sect each other in any point of that plane. In this picture, the
possible solutions appear to be overcomplicated (see Figure 2
below). There is a better way to analyze the topology of so-
lutions of the IM given by Equations (13) and (14). Namely,
one can reduce these equations to a differential form that does
not include any parameters except initial conditions. This is
readily seen since one can exclude ξ from Equation (13) us-
ing Equation (14). In order to find an equation providing a
unique relationship between Ma and λ in a form that is inde-
pendent of conditions at the reference surface, we differentiate
Equation (14) and, using Equation (13), obtain a differential

5



The Astrophysical Journal, 765:90 (21pp), 2013 March 10 Volkov & Johnson

Figure 1. Phase portrait of the system given by Equation (17) at γ = 1.4 (a), γ = 1.48 (b), γ = 1.5 (c), γ = 1.6 (d), γ = 1.66 (e), and γ = 5/3 (f). At γ < 5/3,
the phase portrait consists of four solution families (thin curves): I (red), II (green), III (blue), and IV (magenta), and critical solutions (thick solid and dashed curves,
black) that go through the critical point C with MaC = 1 and λC = 2γ . At γ = 5/3 only solutions of families I and II exist that are divided by the single critical
solution. In panel (f), point C marks the limit position of the critical point at γ → 5/3. M marks the point with position MaM = 0 and λM = γ /(γ − 1). MCA marks
two branches of the critical solutions, where dMa/dξ > 0. Thick dashed curves correspond to Parker’s (1963) critical solution. Families of solutions shown in panels
(a)–(e) are obtained by solving Equation (17), while solutions shown in panel (f) are obtained with Equation (18).

(A color version of this figure is available in the online journal.)

equation for λ

dλ

dξ
= λ

(1 − Ma2)ξ

(
2
γ − 1

γ + 1

(
λ

γ + 1

2γ
− 2 − (γ − 1)Ma2

)

− 5 − 3γ

γ + 1
(1 − Ma2)

)
. (16)

By dividing Equation (13) by Equation (16), we find a direct
relationship between Ma and λ

dMa

dλ
= Ma

λ

λ
γ +1
2γ

− 2 − (γ − 1)Ma2

2 γ−1
γ +1

(
λ

γ +1
2γ

− 2 − (γ − 1)Ma2
)

− 5−3γ

γ +1 (1 − Ma2)
.

(17)

The critical point corresponds to MaC = 1 and λC = 2γ and
coincides, of course, with the critical point for Equation (13).
However, the critical point, or any initial point (Ma0, λ0),

corresponds to a unique solution of the IM that is represented by
a curve on the phase plane (Ma, 1/λ) (Figure 1). These curves
form a phase-plane portrait of the IM and do not intersect each
other with exception of the critical solutions shown in Figure 1
by thick solid and dashed curves. These converge to the critical
point C. For a monatomic gas (ζ = 0) the general solution
of Equation (17) can be obtained from Equation (14) using
γ = 5/3:3

λ

λ0
=

√
Ma

Ma0
. (18)

3 Equation (17) can be also integrated in a limit case of a polyatomic gas with
γ = 1 (ζ → ∞), when the solution becomes ln(Ma/Ma0) − (Ma2 − Ma2

0 ) =
ln(λ/λ0)2 − (λ − λ0). The case of γ = 1, corresponding to a near isothermal
atmosphere, has been used to predict the flow in close-in exoplanet
atmospheres (Stone & Proga 2009). We believe that a solution of
Equation (17) for γ = 1 is not realistic, since in our model γ is the adiabatic
index and, thus, is related to the activated degrees of freedom of gas molecules.
The case γ = 1, therefore, is not considered in the present paper.

6
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Figure 2. Typical solutions of Equation (13) at γ = 1.4 (a) and γ = 1.6666 (b). Thick solid and dashed curves (black) correspond to critical solutions with the critical
point C at ξ = 1. Thin solid curves (red), dashed curves (green), dash-dotted curves (blue), and long-dashed curves (magenta) correspond to solutions of families I,
II, III, and IV. In panel (a), solutions of family I are plotted for λ1 = 2γ at ξ1 > 1 and λ1 = 2γ ξ

2(5−3γ )/(γ +1)
1 at ξ1 < 1, where λ1 and ξ1 are imposed values of λ and

ξ at Ma = 1; solutions of family II are plotted for λ1 = 2γ ξ
2(5−3γ )/(γ +1)
1 at ξ1 > 1 and λ1 = 2γ at ξ1 < 1. In panel (b), solutions of families I and II are plotted for

λ1 = 2γ . Solutions of families III and IV in both panels (a) and (b) are plotted for λ1 = 2γ [2 + (γ − 1)Ma2
1 ]/(γ + 1), where λ1 and Ma1 are imposed values of λ

and Ma at ξ = 1. In panel (a), thick dashed curve MCA shows Parker’s (1963) critical solution. At arbitrary γ , only solutions of family I have a supersonic part with
dMa/dξ > 0.

(A color version of this figure is available in the online journal.)

As one can see from Figure 1, at γ < 5/3, the IM has four
solution families divided by branches of the critical solution:
family I, where both Ma and λ can be arbitrary; family II, where
Ma is arbitrary, but λ is limited by the condition λ > λC = 2γ
at γ < 3/2 or by the condition λ > λM = γ /(γ − 1)
at γ > 3/2; subsonic family III, and supersonic family IV.
Examples of solutions of various families in the form of Ma(ξ )
are shown in Figure 2(a) by curves of different colors that
correspond to the color of the solution families in Figure 1(a).
At the sonic point (Ma = 1), any solution of families I and
II has dξ/dMa = 0, while the sign of the second derivative
is different for families I and II. The solutions of family I at
the sonic point have λ < 2γ and d2ξ/dMa2 > 0, so that
such solutions achieve their minimum at the sonic point and
their supersonic branches propagate to infinitely large ξ having
dMa/dξ > 0. The solutions of family II at the sonic point
have λ > 2γ and d2ξ/dMa2 < 0. Such solutions achieve their
maximum ξ at the sonic point and their supersonic branches have
dMa/dξ < 0. Thus, any isentropic flow with initial conditions
(Ma0, λ0) within the region of solutions of family II cannot be
continued up to an infinite ξ .

Parker (1960, 1963) analyzed the IM for solar wind flows
in terms of u as a function of r . He considered the solutions
that start with small u at the source surface and then proceed
with du/dr > 0 to very high velocities at large r . In that
way, he found that the continuous acceleration of the flow from
small to large u is possible only if the flow first follows the
critical solution given by the curve MC in Figure 1(a) and then
proceeds along the upper branch of the critical solution given
by curve CA in Figure 1(a). This conclusion was subsequently
confirmed by Carovillano & King (1965), who used a different
approach for analyzing the IM. The condition du/dr > 0 is
satisfied along MC and CA only for polyatomic gases with
γ < 3/2. Since λC < λ < λM = γ /(γ − 1) for such γ Parker
finally concluded that the physically realized flow, which starts
at a reference surface with a subsonic velocity, should follow
the critical solution of the IM and must satisfy the following
conditions:

γ < 3/2, (19a)

2γ < λ0 <
γ

γ − 1
. (19b)

Since these conditions are not satisfied for a monatomic gas,
one can argue that spherically symmetric hydrodynamically
escaping flows of a monatomic gas should be different from
flows of polyatomic gases (Parker 1963; Levi & Podolak 2009).

Our analysis of isentropic flow is in agreement with
Parker’s analysis: Although the transonic critical solution with
dMa/dξ > 0 always exists at γ < 5/3, the subsonic branch of
this solution satisfies the condition du/dr > 0 only at γ < 3/2.
In Section 3, we will show that Parker’s assumption that all
physically realized flows must have du/dr > 0 is, in fact, in-
correct. On the other hand, we show below that dMa/dξ > 0
is found to be satisfied in all flows considered in our kinetic
simulations in both mon- and diatomic gases.

3. RESULTS OF KINETIC SIMULATIONS OF
HYDRODYNAMIC ESCAPE WITH EVAPORATIVE-TYPE

BOUNDARY CONDITIONS

3.1. Comparison of Flow Structures in Mon- and
Diatomic Gases

Distributions of gas parameters found in the DSMC sim-
ulations in the regime of hydrodynamics escape are shown
in Figures 3–5 for mon- and diatomic gases. At small Kn0,
at the source surface, a Knudsen layer is formed, where the
flow transforms from a non-equilibrium flow near the source
to near equilibrium at the top boundary of this layer, as dis-
cussed earlier by Volkov et al. (2011a, 2011b). Since the flow
in the Knudsen layer is non-equilibrium and, hence, non-
isentropic, both enthalpy h = cpT + u2/2 − GM/r and en-
tropy s = cV ln(T/ργ−1) vary across this layer (Figures 3(a)
and (b)). Outside the Knudsen layer, h and s tend to be
constant at small Kn0 up to fairly large distances from the
source (Figures 3(c) and (d)). This indicates that a hydrody-
namically escaping flow for λ0 > 0 can be approximated out-
side the Knudsen layer by the IM, as discussed in the next
section.

The typical thickness of the Knudsen layer, δK , is a few tens
of mean free paths of gas molecules at the source surface, l0,
and, thus, δK/R0 tends to zero as Kn0 decreases. The changes in
the gas parameters across the Knudsen layer, however, remain
finite even in the limit Kn0 → 0, as suggested by simulations
with small Kn0 = 10−4−10−5. Therefore, the parameters at the

7



The Astrophysical Journal, 765:90 (21pp), 2013 March 10 Volkov & Johnson

Figure 3. Distributions of gas enthalpy h/h0 (panels (a) and (c)) and entropy s/s0 (panels (b) and (d)) vs. distance from the source surface (r − R0)/l0 (panels (a)
and (b)) and distance from the source center r/R0 (panels (c) and (d)) found in kinetic simulations with the PM model (γ = 5/3, ω = 1) at λ0 = 1 and various Kn0.
Curves are marked with Kn0 = 10−5 (magenta), Kn0 = 10−4 (cyan), Kn0 = 10−3 (black), Kn0 = 10−2 (red), Kn0 = 10−1 (green), and Kn0 = 1 (blue).

(A color version of this figure is available in the online journal.)

top of the Knudsen layer differ from the surface parameters even
when Kn0 → 0. Distributions shown in Figure 4 clearly reveal
an absolute convergence of the flow structure with decreasing
Kn0 → 0 to some limit, where it becomes independent of
Kn0 at large distances from the source. This limit can be
described by the IM. At any finite Kn0, the isentropic flow
zone gradually gives way to the far field, the zone of non-
equilibrium transitional and near free molecular flow, where
the lack of collisions results in the deviation between parallel
and perpendicular temperatures (Figure 6). In particular, the
perpendicular temperature drops to zero, while the parallel
temperature goes to a non-zero asymptotic value that results
in finite terminal Mach numbers. This qualitative picture of
a spherical outflow in the far field at zero gravity is known
since pioneering work by Hamel & Willis (1966) and Edwards
& Cheng (1966) and has been recently confirmed by Volkov
et al. (2011b) for flows at non-zero gravity. It is worth noting
that there is a strong change in h and s as Kn0 drops from
10−2 to 10−3. This is an indication that a true Knudsen layer,
above which there is an isentropic flow zone, is formed only at
Kn0 < ∼10−3 − 3 × 10−3. At Kn0 > 10−2, the flow remains
non-equilibrium throughout; at Kn0 � 1 the flow can be fairly
well approximated by the free molecular flow model (Öpik &
Singer 1961; Lemaire 1966). That free molecular flow deviates
significantly from the predictions based on the IM (Volkov
et al. 2011b). The condition Kn0 < ∼10−3 − 10−2 defines the

lower limit of surface vapor pressure and, thus, the surface
temperature, when the IM can be applicable for the description
of rarefied KBO atmospheres (Levi & Podolak 2009).

Distributions of the Mach number, temperatures, and many
other parameters for mon- and diatomic gases exhibit a similar
behavior as shown by Volkov et al. (2013). Here, therefore,
we compare only the distributions of velocity and local Jeans
parameter for mon- and diatomic gases (Figure 5) in order to
reveal the following minor qualitative differences between flows
of these gases and in the blow-off regime.

First, in the diatomic gas the velocity is always an increasing
function of r/R0, while for a monatomic gas a non-monotonic
dependence is found (Figures 4(a), 5(a), and (b)). The height of
the maximum in the gas velocity (with respect to the terminal
velocity) rises with increasing λ0. This clearly shows that the
hypothesis, du/dr > 0, that Parker (1963) used for selection
of physically realized solution of the IM is incorrect for a
monatomic gas. The local Mach number, on the other hand,
is found to be a monotonically increasing function of r/R0 in
all simulation performed (e.g., Figure 4(b)).

Second, in both gases at small Kn0, the gas temperature T
can fall faster than 1/r (Figure 4(c)), so that the local Jeans
parameter is not a monotonic function of r/R0 (Figure 4(d)). In
a diatomic gas, however, the thickness of the region, where T
drops faster than 1/r is very narrow and attached to the Knudsen
layer. By contrast, in a monatomic gas T drops faster than 1/r

8
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Figure 4. Distributions of gas velocity u/C0 (a), local Mach number Ma = u/
√

γ kT /m (b), temperature T/T0 (c), and local Jeans parameter λ = GMm/(kT r)
(d) vs. distance r/R0 found in kinetic simulations with the PM model (γ = 5/3, ω = 1) at λ0 = 1 and various Kn0. Curves are marked with Kn0 = 10−4 (brown),
Kn0 = 10−3 (black), Kn0 = 10−2 (red), Kn0 = 10−1 (green), and Kn0 = 1 (blue). Dash-dotted curves are calculated with the IM with onset at the top boundary
of the Knudsen layer, r = rK , where rK is given by Equation (20) and using initial parameters found in the DSMC simulations at Kn0 = 10−3. In panel (a), the
dash-dotted curve visually coincides with solid curve for Kn0 = 10−3. Flow field at Kn0 = 10−4 was calculated with R1/R0 = 10. C0 = √

2 kT0/m.

(A color version of this figure is available in the online journal.)

up to fairly large distances from the source. As a result, in
a diatomic gas the region with dλ/dξ > 0 is narrow, while
in a monatomic gas dλ/dξ remains positive up to the upper
boundary of our computational domain.

3.2. Comparison of Results of Kinetic Simulations
with the Isentropic Model

At Kn0 < ∼10−3 −3×10−3, the distributions of gas parame-
ters found in the DSMC simulations for both mon- and diatomic
gases agree fairly well with the distributions predicted by the
IM outside the Knudsen layer (dash-dotted curves in Figures 4
and 5) and demonstrate qualitative features that were previously
established based on the analysis of the IM. First, for both mon-
and diatomic gases, the local Mach number is an increasing
function of distance for all r. Second, for a monatomic gas, ve-
locity u can be a decreasing function of distance. Finally, in a
monatomic gas, the fast drop in temperature and rise in local
Jeans parameter agree with Equation (18).

The degree of deviation of the kinetic solution from the solu-
tion of the IM is different for different parameters. The deviation
in temperature increases relatively fast with r due to increasing
difference between parallel and perpendicular temperatures and
the same is true for other temperature-dependent parameters
such as Ma and λ. On the other hand, densities and velocities

found in the DSMC simulations and calculated with the IM re-
main close to each other to very large distances from the source.
In particular, at Kn0 = 10−3 the difference in u remains of the
order of a few percent up to the external boundary of our com-
putational domain, R1/R0 = 40. Thus, at Kn0 � 10−3, the IM
predicts the flow at fairly large distances from the source with
accuracy sufficient for atmospheric studies.

In order to show how the flow structures found in the
DSMC simulations for both mon- and diatomic gases correlate
with the critical solutions of the IM, the distributions of gas
parameters found in the DSMC simulations at Kn0 = 10−3

were recalculated in the form of curves f (Ma, λ) = 0, which
were plotted on top of the phase portraits of the IM in Figure 7.
The lowest points of the thick curves representing the DSMC
solutions in Figure 7 correspond to the source surface. It is
seen that in both gases a DSMC solution found at a small
Knudsen number can be divided into two distinct parts. The
first, which corresponds to the near surface Knudsen layer,
crosses individual solutions of the IM, since in the Knudsen
layer h, s 
= const. At sufficiently large λ0, this part of the
DSMC solution can intersect one branch of the critical solution.
The second part closely follows an individual solution of the
IM. The supersonic part of the DSMC solution lies in the region
of solutions of family I of the IM. It is surprising that at λ0 < 2
for both mon- and diatomic gases, the flow does not follow
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(A color version of this figure is available in the online journal.)
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Figure 6. Schematic representation of flow zones (I, II, and III) of hydrodynam-
ically escaping flow at Kn0 � 1. The two zones of non-equilibrium flow, the
Knudsen layer I and far field III, are divided by a quasi-isentropic zone II, where
the flow can be approximately described by the IM given by Equations (5a),
(10), and (11). With increasing Kn0, the region of the quasi-isentropic flow
gradually disappears. With increasing λ0, the thickness of the Knudsen layer,
δK , decreases, while the thickness of the subsonic flow region, δ∗, increases, so
eventually δ∗ becomes larger than δK . The boundaries between flow zones can
be defined only approximately.

(A color version of this figure is available in the online journal.)

Parker’s critical solution. Only when λ0 approaches the largest
Jeans parameter for which the flow remains hydrodynamic do
the DSMC solutions tend to closely follow the critical solutions
with Ma > 1 and dMa/dr > 0.

An interesting feature of the DSMC solution in a diatomic
gas is that the flow becomes consistent with the subsonic part
of Parker’s (1963) critical solution as λ0 approaches λc given
by Equation (3): e.g., see the thick curve for λ0 = 2.7 in
Figure 7(b). Thus, the flow of a diatomic gas at small Kn0 can
include a subsonic region, where the solution closely follows
the IM. Our DSMC simulations allow one to estimate the range
of λ0 as 2.1–2.9 for which this is applicable. In this range the
DMSC solutions for a diatomic gas go through the critical point
of Equation (17), where Ma = 1 and λ = 2γ . The degree
of deviation of the DSMC solutions at Kn0 larger than 10−3

is demonstrated in Figure 8. It confirms that Kn0 = 10−3 is
the approximate upper limit for which there is a zone of nearly
isentropic flow. The results in Figure 8 also show that the DSMC
solutions do not approach the critical solution with decreasing
Kn0 if λ0 is constant and sufficiently small with respect to λc1.
However, the local Jeans parameter at the sonic surface weakly
depends on Kn0 if Kn0 � 10−2 and closely approaches λC

when λ0 increases and approaches the upper limit of the Jeans
parameter for the hydrodynamic escape regime.

The presence of non-equilibrium zones, the Knudsen layer
and far field, enables formation of an isentropic flow zone at
small Kn0 and arbitrary γ and λ0 even if conditions given by
Equation (19) are not satisfied. These conditions are obtained
by analyzing the asymptotic behavior of the IM at r → 0 and
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Figure 7. Flow structures in terms of the dependences Ma = Ma(1/λ) (thick solid curves) found in kinetic simulations at Kn0 = 10−3 and various λ0 for monatomic
(a) and diatomic gases (b) shown together with the phase portraits of the IM (thin solid curves) taken from Figures 1(f) and (a). Kinetic simulations are performed
with PM (a) and PMLB2 (b) models. The dashed line corresponds to Ma = 1.

(A color version of this figure is available in the online journal.)

Figure 8. Flow structures in terms of the dependences Ma = Ma(1/λ) (thick
solid curves) found in kinetic simulations at λ0 = 1 and various Kn0 for a
monatomic gas (PM model) shown together with the phase portraits of the
IM (thin solid curves) taken from Figure 1(f). The dashed line corresponds to
Ma = 1.

(A color version of this figure is available in the online journal.)

r → ∞. This asymptotic behavior, however, is never realized,
since the flow properties in the Knudsen layer and far field are
qualitatively different from predicted by the IM. Namely, the
gas flow attains supersonic or large subsonic velocities inside
the Knudsen layer, so that the existence of a subsonic branch
of the IM is not necessary. In particular, since at small Kn0
the isentropic flow zone exists at λ0 � 2γ , Parker’s conditions
cannot be used in order to obtain a lower limit for the possible
range of masses or radii of planetary bodies as attempted for
KBOs (Levi & Podolak 2009). In the far field, u, T → const > 0
and, consequently, λ → 0 at r → ∞, irrespectively of the flow
behavior at finite r. The latter, in particular, makes possible the
existence of the supersonic isentropic flow zone at γ > 3/2,
when u and 1/λ decrease with increasing r .

3.3. Comparison of Results of Kinetic Simulations with the
Full and Reduced Navier–Stokes Models

The results of the DSMC simulations were also com-
pared with the solutions of the time-dependent Navier–Stokes
equations (4) found in the limit t → ∞ (referred to as solutions

of the full Navier–Stokes model) and the steady-state equations
(5) with zero viscosity (referred to as solutions of the reduced
Navier–Stokes model). The equations of the full Navier–Stokes
model are solved with the splitting numerical methods, where
advective terms are approximated with the Richtmayer or FLIC
TVD (Flux Limiter Centered Total Variation Diminishing)
schemes, and the diffusive terms are approximated by the central
differences of the second order (Toro 1999) on a computational
mesh with constant cell size Δr/R0 = 10−3 − 10−2. Three dif-
ferent lower boundaries are adopted for calculations: The source
surface (r = R0), sonic surface (r = r∗), and top of the Knudsen
layer (r = rk) given by Equation (20), which we will discuss
in Section 3.4. The positions of the sonic surface and the top
boundary of the Knudsen layer, as well as boundary values of
n, u, and T at the lower boundary are set equal to the values
found in the corresponding DSMC simulations. The equations
for reduced Navier–Stokes model are solved numerically with
the Runge-Kutta method of the second order with the spatial
resolution Δr/R0 = 10−5 − 10−6. The initial conditions in this
case are set at the top boundary of the Knudsen layer. The
values of n and T at the lower boundary and the escape rates
Φn and Φe were taken from results of corresponding DSMC
simulations.

The calculations with the full and reduced Navier–Stokes
models were performed at Kn0 = 10−4 − 10−1 in the full
range of λ0 under consideration for both mon- and diatomic
gases. For a diatomic gas, it was assumed that the viscosity
and thermal conductivity can be still calculated with equations
for a monatomic gas, and, in particular, the Prandtl number
Pr = cpμ/κ is equal to 2/3. Although the latter is not
completely accurate for a diatomic gas, our calculations reveal
the same order of discrepancy between the full Navier–Stokes
model and DSMC simulations for both gases. The results of
these calculations are described below based on the typical
example shown in Figure 9 for a monatomic gas of PM
molecules.

It was found that the reduced steady-state Navier–Stokes
model (thin dashed curves in Figure 9) is unsuitable for
calculations of the flow structure in the blow-off regime. At
fixed n and T at the lower boundary and fixed Φn and Φe taken
from a DSMC simulation, the gas temperature in the solution
of the reduced Navier–Stokes model goes to zero or infinity at
finite, and fairly short, distance from the source, where the mean
free path of gas molecules is still fairly small (l/R0 ≈ 3.7 ·10−3

11
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Figure 9. Comparison of distributions of the local Mach number Ma obtained in the DSMC simulations (solid curves, red) and applying the IM with origin at r = rK
(dashed curves, green) and at r = r∗ (dash-dotted curves, blue), steady-state reduced Navier–Stokes (N.-S.) model with origin at r = rK (thin dashed curves, black),
and time-dependent full Navier–Stokes model with origin at r = R0 (dash-double-dotted curve, magenta) for the PM model at λ0 = 1 and Kn0 = 10−3 (a) and
Kn0 = 10−2 (b). The distributions of Ma obtained with the full Navier–Stokes model with origins at r = r∗ and r = rK are not plotted, but visually coincide with
corresponding distributions obtained in the DSMC simulations. Solutions of the hydrodynamic models are obtained with initial or boundary conditions taken from the
DSMC simulations. Vertical lines mark positions of the sonic surface, r = r∗, and the top of the Knudsen layer, r = rK .

(A color version of this figure is available in the online journal.)

at r/R0 = 1.2 in Figure 9(a)). Using the adjustment of Φe from
the DSMC simulation cannot help to resolve this issue since
the solution is very sensitive to Φe. In particular, the solution
of the reduced Navier–Stokes model shown in Figure 9(a) was
obtained by the trial-and-error adjustment of Φe with increments
10−6% (which is orders of magnitude smaller than the estimated
level of numerical errors in Φe in our DSMC simulations). In
spite of such a small increments, it was impossible to extend
the solution of the reduced Navier–Stokes model with T > 0 in
Figure 9(a) beyond r/R0 = ∼1.25.

On the other hand, a solution of the full Navier–Stokes model
based on time-dependent equations with finite temperature at
arbitrary large distance from the source can be obtained even
if the lower boundary is taken directly at the source surface
(dash-double-dotted curves in Figure 9). In our calculations, we
were able to extend such solutions up to r/R0 = 40 using
sufficiently small time steps. At Kn0 = 10−3 this solution
visually coincides with the DSMC solution inside the Knudsen
layer, but in the isentropic flow zone the full Navier–Stokes
model is visually indistinguishable from the solution obtained
with the IM with origin at r = rK . The solutions of the full
Navier–Stokes model with origin at the sonic surface or at
the top of the Knudsen layer (not shown in Figure 9) have
orders-of-magnitude smaller discrepancy and visually coincides
with the DSMC distributions up to the upper boundary of
our DMSC computational domain. The advantage of the full
Navier–Stokes model becomes apparent from the results for
Kn0 = 10−2. Surprisingly, it still provides good approximation
to results of kinetic simulations unlike the IM (Figure 9(b)). On
the other hand, for Kn0 � 0.1 the full Navier–Stokes model
fails to predict the structure of rarefied flows. Similar results
were obtained for different values of λ0 and for a diatomic
gas. Thus, the calculations showed the full Navier–Stokes
model has no advantage over the simpler IM calculations at
Kn0 = <10−3 − 3 · 10−3. It is superior to the IM only in
the narrow range Kn0 = ∼3 · 10−3 − ∼3 · 10−2, in which the
IM fails. At Kn0 > ∼3 · 10−2, flows do not contain a distinct
Knudsen layer or a near equilibrium flow zone, as discussed
earlier, so that kinetic simulations are required.

3.4. Structure of the Knudsen Layer

We have shown that the IM and full Navier–Stokes model
alone are not capable of predicting blow-off. The good agree-
ment between these models and the DSMC simulations reported
in Sections 3.2 and 3.3 for Kn0 � 10−3 was achieved because
the boundary (or initial) conditions were taken from the DSMC
simulations. In spite of the fact the thickness of the Knudsen
layer, δK , is of the order of a few tens of mean free paths
(Figure 3) and, hence δK/R0 → 0 at Kn0 → 0, this region
cannot be ignored. Thus, any approximation of the flow field
with the IM requires a determination of the flow parameters at
the top of the Knudsen layer.

The structure of the Knudsen layer (Figure 10) at 0 < λ0 < ∼2
resembles the structure of the Knudsen layer on a spherical body
evaporating into vacuum at the absence of gravity (see, e.g.,
Cercignani 2000; Sone & Sugimoto 1993; Davidsson 2008;
Lukianov & Khanlarov 2000). The distributions of n/n0 and
u/C0 in both monatomic and diatomic gases are fairly close
to each other in this region with the most important difference
being a slower drop in T⊥/T0 and T||/T0 in the case of diatomic
gas. This is a result of additional energy transfer from internal
to translation degrees of freedom in a diatomic gas.

The thickness of the Knudsen layer, δK , is often thought to
be on the order of the mean free path of gas molecules, since
typically the local translational equilibrium is established after a
local mean collision time. The results of the kinetic simulations
without gravity, e.g., Lukianov & Khanlarov (2000) and our
DSMC simulation at λ0 > 0 (Figure 3) showed that the actual
thickness of the Knudsen layer is at least an order of magnitude
larger than l0 as described earlier. Following Cattolica et al.
(1974) and Lukianov & Khanlarov (2000), we calculate the
position of the top boundary of the Knudsen layer rK = R0 +δK

based on the criterion

3(T||(rK ) − T⊥(rK ))

T||(rK ) + 2T⊥(rK )
= −0.01. (20)

With decreasing Kn0 for constant λ0 gas parameters at the
source surface, top boundary of the Knudsen layer, and sonic
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Figure 10. Distributions of density n/n0, velocity u/C0, local Mach number Ma = u/
√

γ kT /m, parallel, T||/T0, and perpendicular, T⊥/T0, temperatures vs.
distance r/R0 inside the Knudsen layer found in kinetic simulations for monatomic (PM model, panel (a)) and diatomic (PMLB2 model, panels (b) and (c)) gases at
Kn0 = 10−3 and λ0 = 1 (panels (a) and (b)) and λ0 = 2.7 (c). In panels (b) and (c), dashed curves show distribution of the temperature Ti/T0 of internal degrees of
freedom of diatomic molecules. Vertical lines mark positions of the sonic surface and the top of the Knudsen layer. C0 = √

2 kT0/m

(A color version of this figure is available in the online journal.)

surface tend to stabilize (Figure 11). In particular, the parameters
at the source and sonic surface vary monotonically with Kn0
but become nearly independent of Kn0 at Kn0 < 10−3.
The parameters at the top of the Knudsen layer vary non-
monotonically and continue to change even around Kn0 =
10−5, the smallest Knudsen number considered in simulations.
The thicknesses of Knudsen and subsonic layers, δK = rK −R0
and δ∗ = r∗ − R0, for Kn0 < 10−3 are both two orders
of magnitude larger than l0. At moderate and large Kn0
(Kn0 >∼10−4 in Figure 11(b)), the Mach number on the top of
the Knudsen layer is supersonic, but at Kn0 < 10−3, δK weakly
decreases, while δ∗ increases approximately as 1/

√
Kn0 so that

eventually the flow at the top of the Knudsen layer becomes
subsonic with decreasing Kn0. The transition from supersonic
to subsonic flow at the top boundary of the Knudsen layer with
decreasing Kn0 is found for all λ0 considered including the
case of λ0 = 0. The Mach number at the top of the Knudsen
layer, MaK , is an important parameter for the application of
hydrodynamic models. In particular, Anisimov (1968; see also
Cercignani 1980, 2000) has shown that solving the flow in the
Knudsen layer by the method of moments allows one to obtain
all parameters at the top of the Knudsen layer as functions of the
surface parameters and MaK . The dependences of parameters
at the source surface, top of the Knudsen layer, and the sonic

surface in a diatomic gas are qualitatively similar to dependences
for a monatomic gas and are given in the Appendix.

The most important changes in the structure of the Knudsen
layer occur when λ0 approaches the upper limit of the blow-off
regime. An increase in λ0 (Figure 12) results in a substantial
decrease in the thickness of the Knudsen layer and MaK , while
nK/n0 and TK/T0 increase. Parameters at the sonic surface ex-
hibit a weak variability with λ0 for λ0 < 1.5, while δ∗ increases
rapidly when λ0 approaches the upper limit of the blow-off
regime. As λ0 increases with Kn0 = const the Mach number
at the top of the Knudsen layer drops going from super- to sub-
sonic flow at the top of the Knudsen layer. The value of λ0 at
which the flow at the top of the Knudsen layer becomes subsonic
drops as Kn0 decreases. Dependences of parameters at the top
of the Knudsen layer and at the sonic surface on λ0 in mon-
and diatomic gases are close to each other quantitatively with
exception of the thickness of the subsonic zone. In all simula-
tions performed for a monatomic gas, δK and δ∗ are the same
order of magnitude and, in particular, the thickness of subsonic
zone remains small as compared with R0. For a diatomic gas,
the flow can include an extended subsonic zone (Figure 10(c)),
but only at λ0 > ∼2.5 (Figure 12(d)) where the actual Jeans
parameter at the source surface, λ(R0) = λ0T0/T (R0), sat-
isfy Equation (19b), i.e., λ(R0) > 2γ = 2.8. Qualitatively, the
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Figure 11. Parameters at the source surface (r = R0, a), at the top of the Knudsen layer (r = rK = R0 + δK , b), and at the sonic surface (r = r∗ = R0 + δ∗, c) vs.
Knudsen number Kn0 found for a monatomic gas with the PM model at λ0 = 1. Nominal thickness of the Knudsen layer, δK , is defined by the condition given by
Equation (20). Curves with square (black), triangle (red), diamond (blue), and circle (green) symbols correspond to nα/n0, Tα/T0, Maα , and δα/R0, where subscript
“α” denotes parameters at the surface (α = s), top of the Knudsen layer (α = K), and sonic surface (α = ∗). In the text, gas parameters at the source surface are also
denoted as n(R0), T (R0), and Ma(R0).

(A color version of this figure is available in the online journal.)

results shown in Figure 12(c) for a diatomic gas are in agreement
with parameters at the top of the Knudsen layer found by Levi &
Podolak (2009). They combined Parker’s critical solution with
the semi-analytical solution for the change of gas parameters
across the Knudsen layer obtained by the method of moments
(Cercignani 1980) for the range of λ0 satisfying Equation (19b),
i.e., for 2.8 < λ0 < 3.5 in a diatomic gas. Quantitatively, how-
ever, the results of the DSMC simulations are different from
this solution. For instance, at λ0 = 2.8, the DSMC simulations
predict MaK = 0.44, while Levi & Podolak (2009) obtained
MaK = 1.

3.5. Number and Energy Escape Rates

The calculation of escape rates is central to understanding
atmospheric evolution. In Figures 13(a) and (b), the escape
rates of a monatomic gas are represented in reduced unit
using the number, Φn0,0 = 4πR2

0n0
√

kT0/(2πm), and energy,
Φe0,0 = 2kT0Φn0,0, fluxes of molecules leaving the source
surface as scaling parameters. These fluxes represent Jeans
escape rates at the source surface at zero gravity.

When Kn0 → ∞, the flow gradually approaches the free-
molecular state and the number escape rate Φn approached its
value Φn,0 = Φn0,0(1+λ0) exp(−λ0) specific for free-molecular
flow, so that reduced values Φn/Φn0,0 diverge depending on
λ0. Quite remarkably, in the limit Kn0 → 0, the values of
Φn/Φn0,0 tend to be independent of λ0 and converge to the

value for spherical expansion at zero gravity. The energy escape
rate, Φe/Φe0,0, does not converge to a λ0-independent value with
decreasing Kn0. On the other hand, we found that the energy
loss rate, Φ′

e

Φ′
e = Φe +

GMm

R0
Φn, (21)

where the contribution of the gravitational energy is removed
(compare with Equation (5b)), becomes independent of the
Jeans parameter at Kn0 → 0 (Figure 13(b)) and, obviously,
also converges to a value which is specific for the spherical
expansion at zero gravity. Thus, in the limit of small Kn0, the
linear dependence of the energy escape rate on λ0 is given by
the equation

Φe

Φe0,0
= Φ′

e

Φe0,0
− λ0

2

Φn

Φn0,0
, (22)

while Φn/Φn0,0 and Φ′
e/Φe0,0 approach constants that are deter-

mined by the intermolecular collision model. The dependences
of the escape rates on λ0 and Kn0 in a diatomic gas are quali-
tatively similar to the dependences shown in Figure 13 and are
given in the Appendix.

It is seen from Figures 13(a) and (b) that both Φn/Φn0,0 and
Φ′

e/Φe0,0 still weakly vary with Kn0 even at Kn0 ∼ 10−4,
so that simulations at finite Knudsen number cannot be used
to determine the limiting values of Φn/Φn0,0 and Φ′

e/Φe0,0 at
Kn0 → 0 (Table 1) with errors less than 1%–3%. As shown in
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Figure 12. Parameters at the top of the Knudsen layer (r = rK = R0 + δK , panels (a) and (c)) and at the sonic surface (r = r∗ = R0 + δ∗, panels (b) and (d)) vs. Jeans
parameter λ0 found for a monatomic gas with the PM model (panels (a) and (b)) and for a diatomic gas with the PMLB2 model at Kn0 = 10−3 (panels (c) and (d)).
Nominal thickness of the Knudsen layer, δK , is defined by the condition given by Equation (20). See notation of curves in the caption of Figure 11. Note the difference
in the y-axis scale in panels (b) and (d).

(A color version of this figure is available in the online journal.)

Table 1
Values of Number Escape Rate, Φn/Φn0,0, and Energy Loss Rate, Φ′

e/Φe0,0 Obtained in the DSMC Simulations in
the Limit Kn0 → ∞ with HS, PM, and PMLB2 Models

Model Φn/Φn0,0 Φ′
e/Φe0,0 Φ′

e/(2kT0Φn) Φ′
e/((3 + ζ )kT0Φn) Φ′

e/((3 + ζ )kT∗Φn)

HS 0.838 0.899 1.07 0.713 1.11
PM 0.834 0.897 1.075 0.716 1.11
PMLB2 0.807 1.282 1.588 0.6352 0.84

Volkov et al. (2013), the calculated dependence of Φn/Φn0,0 on
Kn0 at λ0 = 0 is in good quantitative agreement with results
obtained by Bulgakova et al. (1997), so that the weak variation
of Φn/Φn0,0 at small Knudsen numbers in our simulations
presumably reflects the nature of the problem and is not caused
by the simulation errors. It was found that the ratio Φ′

e/Φn,
which represents the average sum of kinetic and internal energies
of an escaping molecule, converges with decreasing Kn0 faster
than individual Φ′

e and Φn (Figure 13(c)). The difference in
Φ′

e/(2kT0Φn) between mon- and diatomic gases is caused by
the energy of internal degrees of freedom of molecules in the
diatomic gas, so that values of Φ′

e/((3 + ζ )kT0Φn) for mon- and
diatomic gases differ by only ∼10% (Table 1).

The independence of Φn/Φn0,0 and Φ′
e/Φe0,0 on λ0 at small

Kn0 is the characteristic feature of thermal escape in the
hydrodynamic regime at λ0 < λc1. As λ0 increases above
λc1, the number and energy escape rates rapidly drop (Volkov
et al. 2011a). This drop indicates a transition to the Jeans-like

escape regime. The DSMC simulations showed that at finite
Kn0 this transition takes place over a narrow range of λ0.
The independence of Φn/Φn0,0 and Φ′

e/Φe0,0 on λ0, however,
does not imply the flow parameters are independent of λ0. On
the contrary, the flow parameters continue to change with λ0
(Figure 5).

4. EFFECTS OF ADDITIONAL OUTFLOW AND
HEAT FLUX AT THE LOWER BOUNDARY

The boundary condition given by Equation (1) is well suited
for atmospheric blow-off driven by the surface sublimation
of an icy body such as comets, KBOs, satellites of close-
in exoplanets (Cassidy et al. 2009), and, possibly, the early
evolution of satellites of giant planets like Io. For such bodies the
lower boundary of the computational domain coincides with real
sublimating surface. The boundary conditions in Equation (1)
are only approximate for a virtual boundary in an atmosphere at
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Figure 13. Number escape rate Φn/Φn0,0 (a), energy loss rate Φ′
e/Φe0,0 (b), and the ratio Φ′

e/(2kT0Φn) (c) vs. Knudsen number Kn0 found in the DSMC simulations
for a monatomic gas based on PM model at λ0 = 0 (square symbols), λ0 = 0.3 (triangle symbols), λ0 = 0.6 (nabla symbols), λ0 = 1 (diamond symbols), and λ0 = 2
(circle symbols).

(A color version of this figure is available in the online journal.)

which the flow is small and above which little additional solar
energy is absorbed. If the flow across this boundary is not small
the simple evaporative-type boundary conditions in Equation (1)
should be corrected. The parameters at the lower boundary
of the blow-off flow domain, however, can be found only by
considering the flow below that boundary. In this section, we
pursue a less ambitious goal. Namely, we parametrically study
the sensitivity of hydrodynamically escaping flows to adding a
net flow and heat flux at the lower boundary of the computational
domain. The effect of an added heat flow in the Jeans-like
regime was explored for large λ0 in Titan’s atmosphere (Tucker
& Johnson 2009).

Here we assume small deviations from equilibrium in the ve-
locity distribution of gas molecules entering the computational
domain through its lower boundary by replacing Equation (1)
with the Chapman–Enskog distribution (Chapman & Cowling
1970). Since the viscous stresses in a one-dimensional atmo-
sphere are usually negligible, we account only for the presence
of a fixed radial velocity u0 and heat flux q0 only in the dis-
tribution function and then solve the resulting flow. Then the
boundary condition at r = R0 takes the form:

at v|| > 0: f (R0, v||, v⊥, εi, t) = f̃0t (v|| − u0, v⊥)f̃0i(εi),
(23a)

where

f̃0t (c||, c⊥) = n0

(2πkT0/m)3/2
exp

(
−m

(
c2
|| + c2

⊥
)

2kT0

)

×
[

1 − q0mc||
n0(kT0)2

(
1 − 1

5

m
(
c2
|| + c2

⊥
)

kT0

)]
.

(23b)

For a monatomic gas the distribution, f̃0i(εi) is replaced by 1.
The boundary conditions given by Equation (23) introduce
two additional dimensionless parameters that can be given
in the form of the Mach number Ma0 = u0/

√
γ kT0/m

and dimensionless heat flux Q0 = q0/(n0kT0
√

kT0/m). The
velocity distribution given by Equation (23b) is valid only for
small deviations from equilibrium when Q0 does not exceed
a value on the order of 0.1 (Garcia & Alder 1998). For larger
Q0, f̃0t (c||, c⊥) may take negative values at relatively small
c||/

√
kT0/m, which has no physical meaning. Accounting for

the restriction Q0 < 0.1, the acceptance–rejection method
developed by Garcia & Alder (1998) is used in the DSMC
simulations in order to sample velocities of molecules entering
the computational domain through the lower boundary with the
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Figure 14. Flow structures in terms of the dependences Ma = Ma(1/λ) (thick
solid curves) found in kinetic simulations with the boundary condition given by
Equation (23) with varying Ma0 and Q0 = 0 shown together with the phase
portraits of the IM (thin solid curves) taken from Figure 1(f). Kinetic simulations
are performed with the PM model at λ0 = 1 and Kn0 = 10−3. The dashed line
corresponds to Ma = 1.

(A color version of this figure is available in the online journal.)

velocity distribution given by Equation (23b). It is worth noting
that the actual values of gas parameters at the source surface such
as n(R0), T (R0), u(R0), and Ma(R0) = u(R0)/

√
γ kT (R0)/m

are not equal to parameters n0, T0, and u0 of Equation (23) and
Ma0, since the distribution function of molecules returning to
the surface does not coincide with the distribution function of
outgoing molecules given by Equation (23).

Fixing Ma0 and Q0 in the distribution function for values of
λ0 in the blow-off regime, a series of kinetic simulations with
the boundary conditions given by Equation (23) were performed
for −0.3 � Ma0 � 1 at Q0 = 0 and for 0 � Q0 � 0.1
at Ma0 = 0. As the gas attempts to overcome gravity, these
led, not surprisingly, to increased values of Ma(R0) for the
same Kn0 and λ0. It was found that the effect on the flow
structure and the escape rates of fixing Q0 in the distribution
function is very small. This is in agreement with the fact that
the heat flux contribution into the net energy balance given
by Equation (5b) in the hydrodynamic regime is small. Fixing
Ma0, on the other hand, induces significant changes in both the
flow field (Figure 14) and the escape rates (Figure 15). This is
expected since adding a fixed Ma0 into the distribution function
for the same λ0 and Kn0 results in a strong increase of the
initial enthalpy of fluid particles at the source surface. With Ma0
increasing from 0 to 1, the Knudsen layer at the source surface
gradually disappears and Ma(R0) approaches Ma0 (inset in
Figure 15). With increasing Ma0 at fixed λ0, however, the
DSMC solution on the plane (Ma, 1/λ) shifts further away from
Parker’s critical solution. The results of the DSMC simulations
for a monatomic gas suggest that with variation of Ma0 and λ0
at small Kn0 any point on the plane (Ma, 1/λ) in the domain
of the solution family I with Ma > 1 can be reached with the
isentropic flow.

The reduced number escape rate Φn/Φn0,0 and energy loss
rate Φ′

e/Φe0,0 exhibit a strong, close to quadratic, dependence
on Ma0. Although many factors contribute to the change of
the rates with varying Ma0 (or Ma(R0)), the primary effect is
found to be directly related to net change in the radial velocity
of molecules leaving the source according to Equation (23).
By analogy with Φn0,0 and Φe0,0 for the case Ma0 = 0, one
can introduce the modified Jeans number and energy escape
rates (Yelle 2004; Volkov et al. 2011b), which are equal to the
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Figure 15. Scaled number escape rate Φn (square symbols) and energy loss
rate Φ′

e (triangle symbols) vs. the Mach number Ma0 found in the DSMC
simulations with boundary condition given by Equation (23) and the PM
model at λ0 = 1, Kn0 = 10−3, and Q0 = 0. Dashed curves with open
symbols correspond to the calculated values scaled with the Jeans number
and energy rates at the source at zero gravity, Φn0,0 and Φe0,0. Solid curves
with bold symbols correspond to the same rates scaled with the modified
Jeans escape rates at the source at zero gravity, ΦnJ,0 and ΦeJ,0, given by
Equation (24). Inset shows Ma(R0) vs. Ma0.

(A color version of this figure is available in the online journal.)

number and energy fluxes of molecules, leaving the surface with
the boundary condition given by Equation (23) at q0 = 0 and
zero gravity:

ΦnJ,0 = Φn0,0
[

exp
(−S2

0

)
+

√
πS0(1 + erf(S0))

]
, (24a)

ΦeJ,0 = Φe0,0
[(

1 + 2S2
0

)
exp

(−S2
0

)
+

√
πS0

(
1 + S2

0/2
)
(1 + erf(S0))

]
, (24b)

where S0 = u0/
√

2kT0/m = √
γ /2Ma0 and erf(S) =

(2/
√

π )
∫ S

0 exp(−x2)dx is the error function. Equation (24)
can be obtained by inserting the velocity distribution given by
Equation (23) with q0 = 0 into the kinetic definitions of the
escape rates (see Volkov et al. 2011b for details on the number
escape rate; calculation of the energy escape rate can be per-
formed by analogy) at the source surface and assuming λ0 = 0.
One can see then that the reduced rates in the form Φn/ΦnJ,0
and Φ′

e/ΦeJ,0 demonstrate only moderate variations with Ma0
around their values characteristic for the case Ma0 = 0 (solid
curves with bold symbols in Figure 15). In particular, Φn/ΦnJ,0
varies only from ∼0.846 to ∼0.964 when Ma0 increases from
0 to 1.

5. CONCLUSION

Our kinetic simulations showed that at small Knudsen num-
bers at the source surface a near equilibrium zone of one-
dimensional hydrodynamically escaping atmospheric flow for
both mon- and diatomic gases is formed. This zone can be
accurately described using the IM and appropriate boundary
conditions for all Jeans parameters in hydrodynamic escape
regime (λ0 <∼2.1 and λ0 < ∼2.8 for mon- and diatomic gases,
respectively; see Volkov et al. 2011a, 2011b, 2013). We also
showed that an isentropic flow zone exists only if the Knudsen
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Figure 16. Parameters at the source surface (r = R0, panel (a)), at the top of the Knudsen layer (r = rK = R0 +δK , panel (b)), and at the sonic surface (r = r∗ = R0 +δ∗,
panel (c)) vs. Knudsen number Kn0 found for a diatomic gas with the PMLB2 model at λ0 = 1. Nominal thickness of the Knudsen layer, δK , is defined by the
condition given by Equation (20). Curves with square (black online), triangle (red), diamond (blue), and circle (green) symbols correspond to nα/n0, Tα/T0, Maα ,
and δα/R0, where subscript “α” denotes parameters at the source surface (α = s), top of the Knudsen layer (α = K), and sonic surface (α = ∗). In the text, gas
parameters at the source surface are also denoted as n(R0), T (R0), and Ma(R0).

(A color version of this figure is available in the online journal.)

number at the source surface does not exceed 10−3 − 3 · 10−3,
and above this limit the IM cannot be used for predictions of
the flow structure, unlike what was assumed in the modeling
of highly rarefied KBO atmospheres (Levi & Podolak 2009).
When the source Knudsen number is less than 10−3 − 3 · 10−3,
the isentropic flow zone is surrounded by two essentially non-
equilibrium flow zones, the Knudsen layer at the source surface
and a highly rarefied far field (Figure 6). However, this is often
ignored and the isentropic flow model is used alone to predict
the flow structure, although attempts to account for the rar-
efaction at large altitudes have been included (e.g., Chassefière
1996a, 1996b; Yelle 2004). Here, we show that the
Knudsen layer cannot be ignored even in the limit of infinitely
small Knudsen numbers. This is a result of the non-equilibrium
nature of the flow in the Knudsen layer, where both enthalpy
and entropy substantially change, so that the parameters at the
bottom of the isentropic flow zone always differ from parame-
ters at the source surface. These results are directly applicable to
recent efforts (e.g., Stern & Trafton 2008; Levi & Podolak 2009,
2011) to model sublimation-driven atmospheres on KBO-like
objects, for which the EUV heating is often insignificant. If there
is significant heating in the simulation region that overwhelms
the changes in the enthalpy, then a hydrodynamic model starting
at the source surface can in principle give a reasonable descrip-
tion of the flow structure. This can be the case, for instance,
for modeling of atmospheres of planets orbiting close to their
parent star (Murray-Clay et al. 2009; Koskinen et al. 2012).

For the cases studied here in which there is no heating in the
simulation region it is shown that all families of solutions of
the IM for the spherical flows in the gravitational field can be
classified and analyzed in terms of the local Mach number and
Jeans parameter. Any solution of the IM in that form is unique
for a given number of internal degrees of freedom and does
not depend on other flow parameters. Using this we found that
Parker’s (1963) theory of isentropic flow in the gravitational
field, which is based on the choice of the critical solution
satisfying the condition of monotonically increasing velocity,
fails to predict the results of kinetic simulations for both mon-
and diatomic gases. With arbitrary source Jeans parameters,
the kinetic solutions follow the IM, but do not coincide with
Parker’s (1963) critical solution. Only when the Jeans parameter
at the source approaches the upper limit for the hydrodynamic
regime of thermal escape, does the solution of the kinetic model
approach Parker’s critical solution. Moreover, in a monatomic
gas, the flow velocity can decrease with distance, while the
local Jeans parameter increases in accordance with the general
solution of the IM. At the same time it is found that the local
Mach number, but not the gas velocity, is an increasing function
of distance in all kinetic simulations performed.

We have shown that the real asymptotic behavior in the out-
flow of a neutral gas does not typically follow the hydrodynamic
models including the IM, a fact that was extensively argued in
the past. In particular, the long discussion on the applicability
of the evaporative and hydrodynamic escape (e.g., Chamberlain
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Figure 17. Number escape rate Φn/Φn0,0 (a), energy loss rate Φ′
e/Φe0,0 (b), and the ratio Φ′

e/(2kT0Φn) (c) vs. Knudsen number Kn0 found in the DSMC simulations
for a monatomic gas based on PMLB2 model at λ0 = 0 (square symbols), λ0 = 0.3 (triangle symbols), λ0 = 0.6 (nabla symbols), λ0 = 1 (diamond symbols), and
λ0 = 2 (circle symbols).

(A color version of this figure is available in the online journal.)

1965; Parker 1965; Carovillano & King 1965) was stimulated
to a large extent by the analysis of the possible asymptotic be-
havior of the hydrodynamic model at large distances from the
source. This behavior can make sense for coronal outflow of
plasma or stellar winds in which the Coulomb cross section
keeps the plasma collisional even if density approaches zero
(Parker 1963; Murray-Clay et al. 2009). For atmospheric out-
flow of a neutral gas, where the mean free path of gas molecules
increases roughly inversely proportional to the drop in the gas
density with the distance from the source, hydrodynamic equi-
librium models become inapplicable as r → ∞. The presence
of two non-equilibrium zones, the Knudsen layer and the far
field, enables the existence of the isentropic flow between them
even if Parker’s conditions given by Equation (19) are not satis-
fied since these conditions are derived based on the analysis the
asymptotic behavior of the IM at r → 0 and r → ∞, which is
irrelevant to the blow-off of the neutral gas.

Kinetic simulations showed that the structure of the Knudsen
layer depends on the strength of the gravitational field. With
decreasing Knudsen number at the source, the thickness of the
subsonic flow layer decreases faster than the thickness of the
Knudsen layer. Simultaneously, with an increase in the strength

of the gravitational field and, correspondingly, in the source
Jeans parameter, the thickness of the subsonic layer increases
while the thickness of the Knudsen layer decreases. As a result,
the flows of both mon- and diatomic gases at the top of the
Knudsen layer eventually become subsonic with decreasing
Knudsen number or increasing Jeans parameter. In a monatomic
gas the thicknesses of subsonic and Knudsen layers are the same
order of magnitude. In a diatomic gas a relatively long subsonic
zone may exist, where the flow closely follows Parker’s critical
solution, but only in a narrow range of the Jeans parameter,
from ∼2.5 to ∼2.8, which is close to the transition to the
Jean-like escape. The parameters at the top of the Knudsen
layer, given here as functions of the source Knudsen number
and Jeans parameter, can be used as boundary conditions for
continuum models of hydrodynamics escape when the principal
heat source is below the lower boundary of the simulations
region as well as from sublimation-driven atmospheres of KBO.
This approach enables accurate calculation of the atmospheric
structure and escape rate avoiding computationally expensive
kinetic simulations.

Although the general structure of a hydrodynamic outflow
essentially depends on the Jeans parameters, the number and
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energy loss rates at λ0 � λc1 are nearly independent of the Jeans
parameter in the limit of small Knudsen number, where their
reduced values become constant. This property is characteristic
of hydrodynamically escaping flows and not valid for Jeans-like
escape. The constant reduced rates in the limit of small Knudsen
numbers are completely defined by the model of intermolecular
collisions and coincide with the number and energy loss rates
in the flows at zero gravity.

Kinetic simulations performed with the Chapman–Enskog
velocity distribution function used as a boundary condition at
the lower boundary showed that the additional outflow velocity
and heat flux imposed at the lower boundary do not result in
qualitative changes in the flow field. Whereas the net effect of
the additional heat flux is found to be small, an added upward
flow speed induces a decrease in the thickness of the Knudsen
layer and an increase in the number and energy loss rates. These
loss rates, however, if scaled with the modified Jeans number
and energy escape rates at the source surface at zero gravity
given by Equation (24), are only slightly different from the rates
found with the evaporative-type boundary condition.

In our kinetic simulations for a monatomic gas, the thick-
ness of the subsonic flow zone remains small regardless of
the inflow velocity at the lower boundary. This suggests that
the extended subsonic zone of hydrodynamically escaping hy-
drogen predicted in hydrodynamic simulations of an atmo-
sphere on a close-in exoplanet (e.g., Murray-Clay et al. 2009;
Koskinen et al. 2012) can be attributed to the non-negligible
effect of the net heating of the rarefied part of the atmosphere
due to absorption of the stellar radiation. The kinetic modeling
of atmospheric flows with external heating is a subject of our
current work.

This research was supported by the NASA Planetary At-
mospheres Program and the NSF Astronomy Program. Com-
putational support is provided by the Oak Ridge Leadership
Computing Facility (project MAT009) and the National Sci-
ence Foundation through the Extreme Science and Engineering
Discovery Environment (project TGDMR110090).

APPENDIX

PARAMETERS AT THE SOURCE SURFACE, TOP OF THE
KNUDSEN LAYER, AND SONIC SURFACE AND ESCAPE

RATES IN THE FLOWS OF A DIATOMIC GAS

Figure 16 demonstrates parameters at the source surface, top
of the Knudsen layer, and sonic surface as functions of the
Knudsen number in a diatomic gas. The number and energy
escape rates in a diatomic gas in a range of the Knudsen number
and Jeans parameter are shown in Figure 17. These results are
complimentary to the dependences for a monatomic gas shown
in Figures 11 and 13.
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