Chapter 1. MATLAB

Basics of MATLAB

MATLAB variables and build-in functions

MATLAB script files

MATLAB arrays

MATLAB two-dimensional and three-dimensional plots

MATLAB used-defined functions |

MATLAB relational operators, conditional statements, and selection structures |
MATLAB relational operators, conditional statements, and selection structures Il
MATLAB loops

10. Summary

O 00 N O Uk W E

Text : A. Gilat, MATLAB: An Introduction with Applications, 4th ed., Wiley
Additional text: H. Moore, MATLAB for Engineers, 4th ed., Pearson

ME 349, Engineering Analysis, Alexey Volkov

1.1. Basics of MATLAB

» MATLAB capabilities

» MATLAB command window and workspace
» MATLAB commands

» MATLAB arithmetic expressions

Reading assignment

Gilat, 1.1-1.4

ME 349, Engineering Analysis, Alexey Volkov

1.1. Basics of MATLAB

MATLAB (matrix laboratory) is a numerical computing environment and fourth-generation
programming language.

Developed by MathWorks, MATLAB allows for

>
>
>

YV V.V VYV V

Simple computations as a large and "clever" calculator with user-defined variables.
Vector and matrix manipulations, solving linear algebra problems.

Numerical solution of many problems of mathematical analysis including interpolation,
curves fitting, integration, solution of differential equations, etc.

Plotting of functions and data.

Import/export of data from/to other computational tools.
Symbolic computing.

Implementation of user-defined functions and algorithms.

Interfacing with programs written in other languages, including C, C++, Java, and Fortran.

MATLAB also includes many applications (toolboxes) for specific problems of data analysis, e.g.

>
>
>

Signal analysis.
Image processing.

Curve fitting etc.

1.1. Basics of MATLAB

How can we solve engineering problems with MATLAB?

Programming
(development of algorithms)

Arithmetic and symbolic

! Use of Toolboxes
calculations

Structuring algorithms :
Used-defined functions

Arithmetic expressions

Making decisions:
Selection structures

Pre-defined algorithms
for solving specific

engineering problems: Repeating calculations:

Variables and arrays

Build-in functions

Powerful, but limited by Loops

available toolboxes _
Data import/export

Difficult to tune for new to/from MATLAB
problems

Scripts

Example: Simulink Versatile:

Symbolic mathematics

Any computational algorithm
written in C/C++ or Fortran can
be implemented in MATLAB

Data visualization

ME 349, Engineering Analysis, Alexey Volkov

1.1. Basics of MATLAB

What shall we consider in the classroom?

Arithmetic and symbolic
calculations

Programming
(development of algorithms)

Use of Toolboxes

Structuring algorithms :
Used-defined functions

Making decisions:
Selection structures

Repeating calculations:
Loops

Arithmetic expressions

Variables and arrays

Build-in functions

Curve fitting toolbox

Scripts

Data visualization

ME 349, Engineering Analysis, Alexey Volkov

1.1. Basics of MATLAB
MATLAB program window

4\ MATLABR2013a i

Search Documentaf

5‘} ~ e & @ Cigh New Vaniable | Analyze Code LE_EJ % {0} Preferences. @ (% Community

ap Variable v Run and Time Set Path =
ol S 20P BRmmaTie || oyt Bl il
Dein Wodspace. Cp Close Wirkézabe: e | - Closk Cominans vl iy | Pl L/ gl e e

! VARIABLE I CODE | suuing | ENVIRONMENT | RESOURCES |
d=sp @ FE L » G P Users b AVOLKOVI + Documents b MATLAB Rl
Current Folder IGM Command Window Gf Workspace &

MName « @) New to MATLAB? Watch this Video, see Examples, or read Getting Started. || Name Value Min Max
fic >
Command History &
[~ 10/16/2! -
ExpEulerIntegrator]

ExplulerIntegratorl (0, 10.0, 1.0, 0.01)
ExplulerIntegratorl (0, 10.0, 1.0, 0.001)
015 2:35 B4 —%

—

AdamMonltonZInsegratorl
' RdameMoultonzInsegraserl (0, pi/d, 0.0, 0.1)

. ERzTnegrazor?(0,100.0,-5,-5,0.01)

Details b B a2
L BRZTreegeanorZ (0,10.0,-5,-5,0.01)

i BRZTreegranorZ (0,50.0,-5,-5,0.01)

-4 PR
e —
+- ERdInvegravorz (0,100,-5,-0.1,0.01) =
Select a file to view details * BR4Integrases? (0, 100, ~0.1,-0.1,0.1]
E-4— —1

| BREIncegrasorz(0,80.0,-5,-5,0.011
i BRZInvegravorz (0,50.0,-0.1,-0,0.01)
34— 12/4/2012 3

Ready

ME 349, Engineering Analysis, Alexey Volkov 6

1.1. Basics of MATLAB
MATLABrogram window

Content of the
current work
folder:

For import of data
and codes

Ready

Menu:and application (toolbox) panels

Command window:

Actual calculations are performed here by means of
printing MATLAB commands, including arithmetic
expressions, invoking functions, etc.

List of variables
that are available
for further
calculations

Command
History:

Just for
*t;onvenience

» When executing commands, MATLAB looks for the files only in the current work folder

ME 349, Engineering Analysis, Alexey Volkov

1.1. Basics of MATLAB

MATLAB Command window is the primary place to perform calculations by defining variables,
printing arithmetic expressions, and invoking commands and functions.

MATLAB Workspace is the list of variables we create and store in memory during a MATLAB
session. We can

» Add variables to the workspace by invoking MATLAB instructions, using functions, and
running MATLAB code.

» Save workspace to a disk file for use during the next MATLAB session.

» Load previously saved workspaces.

MATLAB Command history keeps the list of commands that was executed in the command
window

When we execute any command in the command window

» ltis saved in the Command history.

» If new variables are defined in the command, these variables are added to the Workspace.

Example: Commands executed in the command window

a=5
b=2
(a+b)/2.0

ME 349, Engineering Analysis, Alexey Volkov 8

1.1. Basics of MATLAB

MATLAB Commands

» Any operation can be performed by executing a MATLAB command in the MATLAB command
window

» MATLAB has two types of commands:

v Arithmetic expressions, including definitions of new variables and invoking functions,
which serve for real calculations or other purposes.

v" Build-in (predefined) commands that usually do not perform real calculations, but serve
to change the default settings of the workspace and command window and perform
other auxiliary operations.

» MATLAB build-in command can have a list of arguments: command [arg1] [arg2] ...

» We can terminate execution of any command by typing "Ctrl-C" in Command window.

MATLAB
Example 1: Command format changes Soninpnd SUArA0S Cabt Copmmenty
format long 35.83333333333334 16 digits
the defaUIt representation Of real format short e 3.5833e+01 5 digits plus exponent
numbers in the Command WindOW format long e 3.583333333333334e+01 16 digits plus exponent
format hex 4041eaaaaaaaaaab hexadecimal
Example 2: Command clc clears the format bank 35.83 2 decimal digits
current contents of the command format ¢ ' positive, nogative, or zero
format rat 215/6 rational approximation
window format short 35.8333 default display

ME 349, Engineering Analysis, Alexey Volkov 9

1.1. Basics of MATLAB

MATLAB Arithmetic Expressions

» MATLAB arithmetic expressions can include
» Numerical constants: 1, 2.3,-12.123e-4
» Variable names: a, b, and, Results
» Basic arithmetic operations: +, -, *, /, \,

» Build-in and used-defined functions.

» To evaluate an expression, print it as a command in the command window

Example: 1.0+sqrt(pi)/2.0.

» Basic arithmetic operations include:

N

power, a

Operation Symbol Example
addition, a + b + 5+3
subtraction,a — b - 23—-12
multiplication, a x b * 3.14*0.85
division, a + b / or \ 56/8 = 8\56

b : 572

ME 349, Engineering Analysis, Alexey Volkov

10

1.1. Basics of MATLAB

Problem 1.1.1: Convert temperature 1000°F from Fahrenheit (°F) to Celsius (°C)
°C=(F-32.0)+1.38

Solution:

TF = 1000.0;

(TF-32) /1.8

Problem 1.1.2: Calculate distance between points with Cartesian coordinates (1,3,5) and (7,8,-1)

Solution:
sqrt ((1-7)"2+(3-8)"2+(5-(-1))*2)

Problem 1.1.3: Calculate f = x > at x —3 using only multiplication
Solution:

F=1;

X =-3;

F=F*X % Repeat this command 5 times

1.1. Basics of MATLAB

» We can use “1M and “{” keys in order to edit and repeat previous commands.

» MATLAB stores the result of the evaluation of an arithmetic expression in the pre-defined
variable ans.
» MATLAB evaluates expressions from left to right with the following priority:
» Function calls.
» Powers.
» Multiplication and division.
» Addition and subtraction.

» Brackets () can be used in order to change the order of evaluation.
Example: (1.0+sqrt(pi))/2.0 # 1.0+sqrt(pi)/2.0
» If an expression is too long, print three periods ... + Enter to continue the expression on the
next line.
Example:
(1.0+sgrt(pi))...
/2.0

» Use semicolon ; in the end of expression in order to suppress printing the result.

ME 349, Engineering Analysis, Alexey Volkov 12

1.2. MATLAB variables and build-in functions

> MATLAB scalar variables
> MATLAB build-in functions
> MATLAB help

Reading assighment

Gilat, 1.5-1.7

ME 349, Engineering Analysis, Alexey Volkov, Spring 2014

13

1.2. MATLAB variables and build-in functions
MATLAB variables

MATLAB variable stores a (numerical) value in the computer memory, which can be used for
further calculations.

Scalar variable = individual numerical (or text) value.

Array = set of indexed scalar variables.

Scalar variables

» In order to define a new variable it is sufficient to assign to it some value.

Example: b =13.0 * 3
a=2;
b=3.0*a

Variable Assignment Arithmetic expression
c=1.0+a"b name operator to set initial value

Y

Variable name is a sequence of characters, digits, and "_" starting with a character.

A\

Assignment operator = serves to change values of variables: a = 22.733, c=‘Jan. 10, 2014’

» A variable has “general type,” but can store integer (0,+1,+2,...), real (1.234), and complex
(1.7+2.28i) values and strings (‘This is a string’)

» Once initialized, a variable can be used in arithmetic expressions in places of any constant.

ME 349, Engineering Analysis, Alexey Volkov 14

1.2. MATLAB variables and build-in functions

Basic rules about variable names

We should not use variables
which names which coincide
with names of MATLAB build-in
commands, variables or
functions, and keywords

Rule ~ Comments

different MATLAB variables.

Variables can contain up to 63
characters.

Variables must start with a letter, Punctuation characters are not allowed
followed by any number of letters, since many have special meaning to

digits, or underscores. MATLAB.

Variables are case sensitive, fruit, Fruit, FrUiT, and FRUIT are all

Pre-defined variables (they always exist in the workspace)

Variable

Value

ans
pi

eps

inf

NaN

i and j
realmin

realmax

Default variable name used for results
Ratio of the circumference of a circle to its diameter

Smallest number such that when added to 1 creates a
floating-point number greater than 1 on the computer

Infinity, e.g., 1/0
Not-a-Number, e.g., 0/0

i=4 = +-1
The smallest usable positive real number

The largest usable positive real number

Command clear

» Command clear [name] deletes variable [name] from the workspace.

» clear deletes all variables from the work space.

ME 349, Engineering Analysis, Alexey Volkov

15

1.2. MATLAB variables and build-in functions
MATLAB build-in functions

MATLAB function is a stand-alone part of the code, which performs some specific operation, e.g.
calculation of an elementary mathematical function like calculation of \/x, sin x, etc.

Two types of functions:
» Build-in functions are part of MATLAB and can be used at any time.

» User-defined functions are written (coded) by user in the form of stand-alone files can be
repeatedly executed (will be considered later).

Simple syntax of the function call:

Result = FunctionName (argl, arg2, arg3)
Function = function name.

Result = variable which will contain the value calculated by the function (output argument).

argl, arg2, arg3 = list of the function parameters (input arguments).

Typical purpose of the function:

To perform some calculations using arguments (argl, arg2, arg3) as input parameters and assign
the result of calculations to the return variable (Result).

» A function can have arbitrary number of arguments and returned values.

» Arithmetic expression can be used in the place of an individual function argument.

ME 349, Engineering Analysis, Alexey Volkov 16

1.2. MATLAB variables and build-in functions

Elementary math build-in functions

abs(x)
acos(x)
acosh(x)
angle(x)
asin(x)
asinh(x)

atan(x)

atanh(x)
ceil(x)
conj(x)

coSs(X)

atan2(x,y)

Absolute value

Inverse cosine

Inverse hyperbolic cosine
Angle of complex

Inverse sine

Inverse hyperbolic sine
Inverse tangent

Four quadrant inverse tangent
Inverse hyperbolic tangent
Round towards plus infinity
Complex conjugate

Cosine

cosh(x)
exp (X)
fix(x)
floor(x)
imag(x)
log(x)
log10(x)
real(x)

rem(x,y)

round(x)

sign(x)

sin(x)
sinh(x)
sqrt(x)

tan(x)

Hyperbolic cosine

Exponential: ¢*

Round towards zero

Round towards minus infinity
Complex imaginary part
Natural logarithm

Common logarithm

Complex real part

Remainder after division:
rem(x,y) gives the remainder of x/y

Round toward nearest integer

Signum function: return sign of argument,
e.g., sign(1.2)=1,sign(-23.4)=-1,sign(0)=0

Sine
Hyperbolic sine
Square root

Tangent

Example: Calculation of the square root x = /238/m: x = sqrt (238.0 / pi).

ME 349, Engineering Analysis, Alexey Volkov

17

1.2. MATLAB variables and build-in functions

Problem 1.2.1: Calculate
e — 1

sin(ax)

F = log
ata = —2,c = —n/2,x = 1/3

Solution:

A=)0 e- ni /20 =10 /20
F=log(abs((exp(c*x)—1.0)/sin(a*x)))

Problem 1.2.2: Roots of a quadratic equation
ax’+bx+c=0
P

_-b++D
> ¢ 2a

i 2a

X2

Solution:

1. Introduce variables for coefficients, e.g.,a=2,b=2,c=-4,

2. Introduce variable D = b? — 4ac.

3. Introduce variables x1 and x2 for roots. Answer: x1 =1, x2 = -2.
4

Repeat calculations fora=1, b =0, c = 4. Answer: x1 = 2i, x2 = -2i.

D = b? — 4ac

1.2. MATLAB variables and build-in functions

Problem 1.2.3: Calculate components of the velocity vector of a point rotating around axis 0z
with frequency f = 5 Hz and at distance R = 1 cmattimet=10s

- vl + 1) Solution: f=5.0;

:/ w = 21f R = 0.01;
/ R 0= ot t =10.0;
o v =Rw Omega=2.0 * pi * f;
v, = —vsing Theta = Omega * t;
vy, = vcosf V =R * Omega;
Vx =-V *sin(Theta)
Vy =V * cos (Theta)

N
=

MATLAB Help

» Great source of help is the online MATLAB manual available at
http://www.mathworks.com/help/matlab/

» Help is available through the MATLAB panel of instruments/menu or by pressing F1 key

» Information about specific MATLAB command/function is available in the command window
by typing commands help and lookfor:
v" help sqrt retrieves information about topic "sqrt"
v" help shows all topics available
v" lookfor sqrt shows all topics related to word "sqrt"

ME 349, Engineering Analysis, Alexey Volkov 19

1.3. MATLAB script files

» MATLAB script files
» Use of the MATLAB editor to create scripts
» Comments in script files

Reading assignment

Gilat, 1.8

ME 349, Engineering Analysis, Alexey Volkov

20

1.3. MATLAB script files

MATLAB script files

MATLAB script file is a regular text file that contains a sequence of MATLAB commands. Default
extension for the script files is "m", e.g. script.m. We can

» Create/edit a script file in the MATLAB editor or any external text editor.

» Run the script typing its name (script) in the command window. The name of the script
should not be the current variable/build-in command, otherwise the current variable/build-
in command will be executed instead of the script.

The results of the script execution is equivalent to typing all commands from the script in the
command window. All variables defined in the script will be added to the workspace.

Four reasons to use scripts:

» To perform calculations repeatedly with different sets of data.

» To save our work for future MATLAB sessions (saving workspace, we save only variables).
» To debug/look for errors that usually requires multiple running of the same code.

» Script can contain a definition (initial values) of large arrays generated by stand-alone
software or from laboratory measurements.

MATLAB editor has a lot a features that help to write script files.

1.3. MATLAB script files

Problem 1.3.1: Create, save to the disk, and run the script QuadEg.m for finding roots of the
guadratic equation with arbitrary coefficients a, b, and c.

ax’+bx+c=0
7

b+ D
i . 2a

D=b?—4
2a ac

X1 X2

Solution:

Script QuadEq.m:
D=b*b-40%*a*c;
x1=(-b+sqrt(D))/(2.0*a)
x2=(-b-sqrt(D))/(2.0*a)

1. a=2,b=2,c=-4:Rootsarexl =1, x2 =-2.
2. a=1,b=0,c=4:Roots are x1 = 2i, x2 = -2i.

1.3. MATLAB script files

Problem 1.3.2: Create, save to the disk, and run the script Distance2D.m for calculation of a
distance between two arbitrary points on the plane Oxy.

y A
Py (x1,¥1)
[)

Dyy =/ (3 — %)%+ (¥, — ¥1)?

; @ P (x3,y2)
Solution:

> X

Script Distance2D.m:

DX = X2 — X1;
DY=Y2-Y1;

D12 =sqrt (DX"2 + DY"2)

X1=2.0,Y1=-4,X2=3,Y2=5:D12 =9.0554.

ME 349, Engineering Analysis, Alexey Volkov 23

1.3. MATLAB script files
Comments in MATLAB script files

MATLAB comment = any text starting from % until the end of the line. Comments are ignored
during the execution of script/function files.

Example:y=(exp(x)+exp(-x))/2%Variable yis equal to the hyperbolic cosine of x
The good programming practice is to add comments to the code in order to

» Explain the conditions/restrictions applied to the code.

» Explain non-obvious logics/order of calculations.

» Provide references to literature/other sources, containing coherent description of algorithms
or warranting the choice of the simulations parameters.

Problem 1.3.3: Add comments to script QuadEq.m:
% This script file solves problem 1.3.2 from the lecture notes

% This script finds roots x1 and x2 of the quadratic equation
%axM2+btxtc=0

% Coefficients a, b, and c are defined in the script.

echo on % Here we switch on printing the commands

a=2.0

b=2.0

c=-4.0

D=b*b-4.0*a*c; % Semicolon suppresses printing the result for D
echo off % Here we switch off printing the commands
x1=(-b+sqrt(D))/(2.0*a)

x2=(-b-sqgrt(D))/(2.0*a)

ME 349, Engineering Analysis, Alexey Volkov 24

1.4. MATLAB arrays

» One-dimensional arrays

» Creation of one-dimensional arrays

» \ectorized mathematics for arrays

» Use of arrays to manipulate the physical vectors

Reading assighment

Gilat, 2.1-2.6, 3.1, 3.4, 3.5, 3.6

ME 349, Engineering Analysis, Alexey Volkov

25

1.4. MATLAB arrays

Why do we need arrays?

Example: Assume that using a thermocouple we register the body temperature every second
during 100 seconds. Then we will have 100 values of measured temperature. How can we keep
in the computer memory all these values and plot temperature versus time?

» In mathematics, we usually use indexed variables:
In order to distinguish these values we can g
. . - . H
introduce index i and assume that Tj is the o
()
temperature measured at time t; . g'
. . ()
» In programming, we use arrays in order =
to keep in the computer memory all values £ _
L Time

of indexed variables
Array for time t=[t(1) t(2) ...t(i-1) t(i) t(i+1) ...t(99) t(100)]
Array for temperature T=[T(1) T(2) ...T(i-1) T(i) T(i+1) ...T(99) T(100)]
Then to plot temperature versus time we can say: plot (t, T)
» Arrays are useful when

» We need to analyze a large set of uniform/similar data, e.g., tabulated data.

» We perform similar operations on every individual variable/value from this set.

ME 349, Engineering Analysis, Alexey Volkov 26

1.4. MATLAB arrays

MATLAB one-dimensional arrays

» MATLAB array is the list (ordered set, collection) of scalar variables of the same type
» Array serves to keep tabulated data in computer memory

» Scalar variable X = individual value

One-dimensional array Y = an ordered set of N scalar variables Y(i) of the same type, where
every element has one index

*

\ i-th element of the array = scalar variable Y(i)j

N

Array Y

Y = Name of the array
Y(i) = i-th element of the array Y
i = Integer index of elements of array Y varying from 1 to N

N =Size of array Y (the number of its elements)

ME 349, Engineering Analysis, Alexey Volkov 27

1.4. MATLAB arrays

Two basic operations with arrays:

> Creation:

» To create an array we must specify its name, size, and individual value of every element.
ArrayName = [Valuel Value2 ... ValueN]

» Brackets [] can be used in order to specify initial values of the array elements.
Example: Array of three elements, Y=[1 -1 (cos(pi/4))].

» Accessing, i.e. getting an element or group of elements of an array
» Parenthesis () can be used to access individual element of an array.
Example: Y(2), individual scalar variable = element of array Y with index 2.

» An individual element of an array can replace a scalar variable in any arithmetic
expression.

Problem 1.4.1: Calculate distance between points with Cartesian coordinates (1,3,5) and (7,8,-1)
Script Distance3DVec.m

X=[135];
Y=[78-1];
L=sqrt ((X(1)-Y(1))*2+(X(2)-Y(2))22+ (X(3)-Y(3))"2)

ME 349, Engineering Analysis, Alexey Volkov 28

1.4. MATLAB arrays

Creation of one-dimensional arrays
Four ways to create an array in MATLAB:
» Explicit definition of every element of the array with square brackets []:

Example: Array x with three elements of given values x(1)=0.1, x(2)=2 * pi, x(3)=8.
Xx=[0.12*pi2r3]orx=[0.1,2 * pi, 273]

» Create an array with equal spacing between neighbor points using square brackets []
Array x with first element x(1)=m, last element n, and spacing q. The number of elements is
equalto(n-m)/q+1.
Xx=[m:g:nJorx=m:g:n (x=[m:n]meansg=1)

» Create an array with equal spacing between neighbor points using function linspace
Array of n elements, where the first element is equal to x0, last element is equal to x1, and
spacingg=(x1-x0)/(n-1).
X = linspace (x0, x1, n):

» Create an array based on another array: Number of elements and their values will be
inherited from the source array

Example: Array y such that y(i) = sin (x(i)).
y=sin(x)

ME 349, Engineering Analysis, Alexey Volkov 29

1.4. MATLAB arrays

Problem 1.4.2: Create an array x containing 11 numbers from 0 to 1 with equal spacing and
calculate array y such that y; = exp (x;)

>

Script CreatelDArrays.m
Explicit definition of every element of the array with square brackets []:
x=[00.10.20.30.40.50.60.70.80.91.0]

Create an array with equal spacing between neighbor points using square brackets []
x=[0:0.1:1]

Create an array with equal spacing between neighbor points using function linspace
x = linspace (0.0, 1.0, 11)

Create an array based on another array
y=exp(x)

Useful functions for arrays

sum (x) calculates the sum of elements of array x N

max (x) returns the maximum value in array x sum(X) = x; + x, + -+ xy = z X;

i . . i=1
min (x) returns the minimum value in array x

1.4. MATLAB arrays

>

Vectorised mathematics allows us to perform arithmetic operations on every element of an
array with a single instruction.

Use of arrays with elementary build-in math functions
Majority of build-in elementary functions can be applied to whole arrays

Example:x=[0pi/2pi];y=cos(x);

Scalar-array mathematics
Arithmetic operationsa +b,a-b,a * b, and a/ b can be used if a is an array and b is a scalar
variable.
v’ c=a+bmeansc(i) =a(i) + b for all i
Y’ c=a-bmeansc(i) = a(i) - b forall b+a,b-a,b*aare calculated similarly
v c=a*bmeansc(i) =a(i) * bforalli
v c=a /b meansc(i) =a(i) + b foralli

Array-array mathematics
Arithmetic operations a + b and a - b can be used if a and b are arrays of the same size
v’ c=a+ b meansc(i) = a(i) + b(i) for all i
v’ c¢=a-bmeansc(i) = a(i) - b(i) for all i

1.4. MATLAB arrays

Element-by-element operations
» For two arrays of the same structure, x and y, one can use element by element operations
KoL\ A
v’ c=a.* bmeansc(i) = a(i) * b(i) for all i
v’ c=a./bmeansc(i) =a(i) / b(i) for all i
v’ c¢=a.Mb means c(i) = a(i)*b(i) for all i

Problem 1.4.3: Calculate coordinates of points on circle of radius R=2 with center in point (1, 2)
Parametric representation of a circle:

r(®) = x(@)i + y(@)j : . (x (@), y(@))
x(a) = xy+ Rcosa . =
y(a) = yo + Rsina i ;

Script Circle.m: :

R=20; VA e E et b s

X=[12]; ‘

angle = [0:0.1:1] ;

angle = 2.0 * pi * angle;

x=X(1) + R * cos (angle) :

y =X(2) + R * sin (angle) x'o X

ME 349, Engineering Analysis 32

1.4. MATLAB arrays

Use of arrays in order to manipulate physical vectors

Problem 1.4.4: Assume we introduce Cartesian coordinates and fix three points

Py = (X1,¥1,21), Py = (x3,¥2,22), P3 = (x3,¥3,23). y P,

Let's introduce vectors q

a=(x;—x,Y2 — V1,22 — 21) = (ay, ay, ;) : p A
j 1

b = (x3 — Xx3,y3 — y1,23 — z1) = (byx, by, by). T Y /

Dot product a‘b
a'b=a.b,+a,b,+a,b,
Vector product a X b

We need to calculate: /0 = i b\)° x
Z k

i] Kk
axb=|a& a af=(a,b,—a,b,)i— (ayb, —a,by)j+ (arb, —a,by)k
b, b, b,
Area A of triangle with vertexes Py, P,, Ps

A=-laxb|
The angle y between vectors a and b:

a-b = |a||b|cosy, |a|=Ja,26+a32,+aZ=\/a-a

v

1.4. MATLAB arrays

Script Vectors.m:

P1=[-1215];

P2=[0.75-32.0 1.5e+1];

P3=[03-1];

a=P2-P1;

b=P3-P1;

aabs =sqrt(sum(a.”2));

babs = sqrt (sum (b.A2));

ab=dot(a,b);%=sum(a.*b);

axb=cross(a,b); %= [a(2) * b(3) -a(3) * b(2), a(3) * b(1) - a(1) * b(3), a(1) * b(2) - a(2) * b(1)]
gamma = acosd (ab / (aabs * babs))
A=0.5*sqrt(dot(axb,axb)) % =0.5* sqgrt (sum (axb.”2))

b '
= 93.381", A =272946
|al|b]

Y = acos

» Function dot (a, b)) calculates the dot product of vectors a and b

» Function cross (a, b)) calculates the cross product of vectors a and b

ME 349, Engineering Analysis, Alexey Volkov 34

1.5. MATLAB two-dimensional and three-dimensional plots

» Two-dimensional line plots

» Plotting multiple graphs in the same plot
» Formatting the plot

» Export of plots to graphic (image) files

Reading assighment
Gilat, 5.1, 5.3-5.5, 5.10, and 511

Export of plots to graphic (image) files:
http://www.mathworks.com/help/matlab/printing-and-exporting.html

ME 349, Engineering Analysis, Alexey Volkov

35

1.5. MATLAB two-dimensional and three-dimensional plots

Plotting two-dimensional (2D) data with the plot function

Function y = y(x) (unique y for every x) 2D Curve (non-unique y for every x)
y y (x3,¥3)

(x2,¥2) (Xa,y2)

Vi
‘ (%6 Ye) (X5, ¥s)
(X1, Y1)

X X

Xi
» The plot function plots 2D data (function and curves) in a special figure window.
» The plot function plots values of one 1D array x versus values of another 1D array y.

X =[x1x2x3...xN]
y =[yly2y3..yN] Coordinates of

plot (x, y [, optional parameters]) point 3 (x3,y3)

» Plot is composed of a polyline connecting points (x1,y1), (x2,y2), etc.

ME 349, Engineering Analysis, Alexey Volkov

1.5. MATLAB two-dimensional and three-dimensional plots

1

Problem 1.5.1 : Plot of one period of sin x.

0ar

Script SinPlot.m o6t
x = [0:0.01:1] ; Zz
x=x*2"%pi; y
y=sin(x);
plot (x,y) asf

Q6

08

-1

Problem 1.5.2: Print a circle of radius R=2 with the center in the point X =(1,1)

Script CirclePlot.m .-)
R=2.0; 35| |
X=[11]; 3| Delta=0.1 g

Delta=0.01

De|ta=0.1; 250
angle=[0:Delta:1]; 25
angle = 2.0 * pi * angle; ey

1F

x=X(1) + R * cos (angle);

y =X(2) + R * sin (angle);

plot (x,y)

» By default, plot function updates the current figure window. How can we plot multiple
graphs in the same figure window?

05k

0 L L T L L L L L L L
-1 -0.5 1] 04 1] 2 25 3 -1 -0.8 0 0s 1 15 2 25 3

ME 349, Engineering Analysis, Alexey Volkov 37

1.5. MATLAB two-dimensional and three-dimensional plots

Plotting multiple graphs in the same plot field

There are three ways to plot a few graphs in the same plot (in the same figure window):

» The plot function can plot curves for many pairs of vectors.
Example: plot (x1,y1,x2,y2) plots y1 vs. x1 and y2 vs. x2 in the same plot.

» The line function can add an additional curve (graph) to the plot that already exists.
Example: plot (x1, y1); line (x2,y2)

» The hold on and hold off commands can be used in order to keep the figure window open

for adding additional curves with successive plot functions.
Example : plot (x1,y1); hold on; plot (x2,y2) ; hold off

Problem 1.5.3: Plot sine and cosine in the same figure window
Script SinCosPlot.m

angle=20*pi*[0:0.01:1];

y =sin (angle) ;

plot (angle, vy, 'r') ;

y = cos (angle) ;

line (angle, y, ‘Color’, ‘Green’) ;

ME 349, Engineering Analysis, Alexey Volkov,

38

1.5. MATLAB two-dimensional and three-dimensional plots

Formatting plots
» Basic components of the two-dimensional line plot are show in the figure.
» We can change visual appearance of all these components either by specifying addition
arguments to the plot/line functions or by using additional functions/commands after
invoking the plot function.

(PLOT TITLE]\‘ LEGEND | 3 Additional arguments
Light Intensity as a Function of Distance of the plot and line
1200 ‘ | | | " functions changes visual

R —_— ekt appearance of an
LABEL individual curve
o 000 (pattern, thickness, and
\g ol [Comparison betweentheoryandexperim{ color of the line
i TEXT segments and markers).
2 ool || LABEL
20 (MARKER) » Additional funct.ions
change visual
5 r ‘ ‘ . , . . appearance of the
W 14D.STAJ.3E(C,“)18 2 B common plot elements
X AXIS LABEL) (title, axis labels,

legend, etc.).

ME 349, Engineering Analysis, Alexey Volkov 39

1.5. MATLAB two-dimensional and three-dimensional plots

Formatting individual curves in the plot

» In the plot function, every pair of arrays (x and y) can be followed by a series of expressions
of two types:
v’ Line specifiers
v’ Line properties
that allows us to change visual appearance of the corresponding curve.

» The line specifier is a string that symbolically defines the line color, pattern, and maker type.
Example: plot (%, y, 'r--x")

» The line property is pair of a string, containing the property name, and a value of this
property
Example: plot (x, y, 'LineWidth', 3)

[plot {x,vy, *line specifiers’, *‘PropertyName’,PropertyValue)]
b N

? (Optional) Specifiers that (Optional) Properties with
Vector Vector gefine the type and color values that can be used to
of the line and markers. specify the ling width, and a
marker’s size and edge, and
fill colors.
» Only line properties can be used in the line function.

» See details on line specifiers and properties in Gilat, pages 135-137 (Required for the exam!).

ME 349, Engineering Analysis, Alexey Volkov 40

1.5. MATLAB two-dimensional and three-dimensional plots

Formatting common elements of a plot

m Function/command

Title title (‘Title text’)
Axis labels xlabel (‘X label text’) ; ylabel (‘Y label text”)
Text labels text (‘Text label’)

Legend legend (‘Stringl’, ‘String2’, ..., pos)
Optional integer pos argument (-1,..4) specifies position of the legend with
respect to the plot edges .

AXxis axis ([xmin, xmax, ymin, ymax]) specifies limits for x- and y-axes
axis equal : Sets the same scale for both axes (circle will be shown as a circle).
axis tight: Sets the axis limits to the range of the data.

Grid grid on: Adds grid lines to the plot.
grid off : Removes grid lines from the plot.

Scale type semilogy (x, y) : plots y in the logarithmic scale (use instead of plot)
semilogx (x, y) : plots x in the logarithmic scale (use instead of plot)
loglog (x,y) : plots both x and y in the logarithmic scale (use instead of plot)

» Text strings allow for complex formatting (addition of Greek characters, etc.; Gilat, 146-147)
» Common plot elements can be changed through the menu of the figure window (Gilat, 5.4.2)

ME 349, Engineering Analysis, Alexey Volkov 41

1.5. MATLAB two-dimensional and three-dimensional plots

Problem 1.5.4: Set equal scale for axes and add title and axis labels for the plot in problem 1.5.2

Script CirclePlotFormatted.m iy e e
R=2.0;X=[12]; Delta=0.01; a5}
angle = [0:Delta:1]; angle = 2 * pi * angle; nl
x=X(1) + R * cos (angle); a5

y =X(2) + R * sin (angle);
plot (x, v, 'r-x', 'LineWidth', 2)
axis equal

title ('Plot of a circle')

xlabel ('Coordinate x') .) -~
ylabel ('COOrdinate yl) g1.5 -1 -0A 0 D.chgrd:nate x1.5 2 25 3 35

Exporting plots to graphic (image) files
» The print command sends the content of the current figure window to a printer or the
graphic file of the specified format:
print
print argumentl argument2 ... argumentn
» In order to print to file, the filename and format should be specified:
print —dformat ‘Filename’
format = bmp for the 24-bit bmp file.
format = jpeg for 24-bit jpeg file, etc.
» See details on http://www.mathworks.com/help/matlab/printing-and-exporting.html.
» Graphic files can be printed with "File/Save As" command of the menu in the figure window.

ME 349, Engineering Analysis, Alexey Volkov 42

1.6. MATLAB used-defined functions

» Why do we need functions?
» Major components of a user-defined function
» How to write the functions:
Syntax of user-defined functions
» How to use functions:
Calls of user-defined functions
» Workspace, local, and global variables in MATLAB
» Passing input and output parameters

Reading assignment

Gilat, 7.1, 7.2, 7.4-7.7

ME 349, Engineering Analysis, Alexey Volkov

43

1.6. MATLAB used-defined functions

Why do we need functions ?

User-defined MATLAB function is the stand-alone MATLAB code (sequence of MATLAB
commands) written in the MATLAB language, saved into a regular text file with a special syntax,
and used like build-in MATLAB functions.

Example: Calculation of the angle between two vectors (see problem 1.4.4)

Solution without functions Solution with a function
a—as s function uv=ab (u, v) % Dot product of v and u
b=[78-1]; uv =u(l) * v(1) + u(2) * v(2) + u(3) * v(3);

aabs=sqgrt (a(1) * a(1) +a(2) * a(2) +a(3) *a(3)); | end

babs=sqrt (b(1) * b(1) + b(2) *b(2) +b(3) *b(3));} a=[135];

ab=a(1) * b(1) + a(2) * b(2) + a(3) * b(3) b=[78-1];

gamma = acos (ab / (aabs * babs)) gamma=acos(ab(a,b)/sqrt(ab(a,a)*ab(b,b)))

» Functions is the major tool to logically divide a complex problem into simple sub-problems.

» A function implements solution of a logically simple problem, which later can be used as a
part of the solution of multiple more complicated problems: We save time when we solve
different problems.

» A function allows one to reduce the size of the code if it implements an algorithm that is
used a few times for different data sets: We save time when we write the code.

» A function can be written and debug independently of the rest of the code. We can easily
isolate and correct errors in functions. We save time when we debug the code.

ME 349, Engineering Analysis, Alexey Volkov 44

1.6. MATLAB used-defined functions

Major components required to define and use a function

Function output Function input
arguments (results) uv Function name (ab) arguments(data) u and v

functionuv=ab(u,v)

uv = u(l) * v(1) + u(2) * v(2) + u(3) * v(3); } function
end
bz[[;?é—sl];]; Use of the

Function body
/ (algorithm)

Definition of the

function in the

gamma = acos (abé{)/sqﬂ/(,ab(})*a)b (b,b))) external code

Function calls

Functions has input and output arguments: This is the major difference compared to scripts.

Two steps to use a function:

» Create/define function in the form of an individual text file with extension
MATLAB editor or any external text editor.

» Call (Run) the function in the command window like any build-in function.

m" in the

ME 349, Engineering Analysis, Alexey Volkov

45

1.6. MATLAB used-defined functions

Syntax of MATLAB used-defined functions

» MATLAB functions are distinct from MATLAB scripts: Functions have a special syntax that
defines the list of input arguments, output parameters, name, and body of the function.
» Syntax of the user-defined MATLAB function file:

Function definition line (FDL)
H1 line (optional)

Help lines (optional)

Body (algorithm)

End line (optional)

function [oargl oarg2 ... | = UserFun (iargl, iarg2, ...)
%UserFun This is an example of the user-defiled function
% No real calculations are performed

» FDL includes keyword function, name of the function (UserFun) and lists of output [oargl,
oarg2, ...] and input (iargl, iagr2, ...) arguments.

» Content of H1 is used in search of lookfor command.

» Content of Help lines is used in the help command.

» Body contains a list of commands that transform input arguments into output ones.
» End line consists of keyword end, but can be omitted.

Function: Transformation of

(iargl,iarg2, ...) [oargl, oarg2, ...]

Output

input into output

Input

ME 349, Engineering Analysis, Alexey Volkov 46

1.6. MATLAB used-defined functions

Creation of a function

» Name of the function should coincide with the function file name.

» The MATLAB editor allows one not only to create/edit functions, but also to run functions
separately from the command window, mostly for debug purposes.

» In order for the function to work, the output arguments must be assigned values of the
function body.

» Simplified FDLs are available:

» function oargl = UserFun (...) function [oargl | = UserFun (...)

» function = UserFun (...) function [] = UserFun (...)

Problem 1.6.1: Write a function solving the quadratic equation.
File QuadEgFun.m file:

function [x1 x2] = QuadEgFun (a, b, c)

%QuadEqFun Calculates roots of the quadratic equation

% This functions finds roots x1 and x2 of the quadratic equationa * x*2+b * x+c = 0.
D=b*b-40%a*c;
x1=(-b+sqrt(D))/(20*a);
x2=(-b-sqrt(D))/(2.0*a);

end

ME 349, Engineering Analysis, Alexey Volkov 47

1.6. MATLAB used-defined functions
Call of a MATLAB user-defined function

The syntax of the function call is
[oargl, oarg2, ... | = UserFun (iargl, iarg2, ...)

When MATLAB calls a function, It:

I. Evaluates every expression in the place of input parameter.
Il. Executes the sequence of instruction in the function body .

lll. Updates values of actual variables used in place of output arguments.

» It is the responsibility of programmer to ensure that the type of actual input parameters
corresponds to the type of input arguments assumed in the definition of the function.

» Output parameters can be the names of existing or no-existing workspace variables. If such
variables do not exits, they will be created as a result of the function call.

Problem 1.6.2: Find the roots of the quadratic equation fora=1++/mr,b=2,¢c=2.37/2.0
Solution: [root1 root2] = QuadEqgFun (1.0 + sqgrt (pi), 2.0,2.37/2.0)

1.6. MATLAB used-defined functions
Workspace, local, and global variables in MATLAB

Three classes of MATLAB variables can be used inside functions:

» Workspace variables

» Are defined in the workspace (command window) and exist until explicitly deleted by the
clear command.

» Can be passed to/received from a function through its arguments.

» Local function variables
» Are function arguments and any variables defined in the body function.
» Exist only during the execution of the function body and are not available for calling code.

» Names of local variable can coincide with names of workspace variables, because these
variables represent different cells of the computer memory.

» Global variables
» Defined inside the function using keyword global.
» Available inside any function where they are defined as global.

» Can be also available in the workspace if defined as global in the workspace
(type "global var" in order to define var as a global variable in the workspace).

» We will not use global variables. See Gilat's book, 7.3 (p. 225).

ME 349, Engineering Analysis, Alexey Volkov 49

1.6. MATLAB used-defined functions
Passing input and output parameters

Let's consider a sketch of the computer memory at three stages of execution of Powers:
Before, during, and after calling Powers function in the script

Before During After
o MATLAB function file Powers.m:
(8}
S function [a b] = Powers (x)
4 -
() y =X XI
= a-y* vy o-xra
@ b=a*y; %=x"6
E end
@
>
S y=-2;
—

[yz]=Powers (y-1)

» During a function call, MATLAB creates additional local variables.

» Local variable y and workspace variable y are different variables. There is no any

relationship between them.
» Local variables exist only during execution of the function body.

ME 349, Engineering Analysis, Alexey Volkov

50

1.7. MATLAB relational operators, conditional statements, and selection structures |

» Why do we need branching? What does 'to make a
decision' mean?

» Logical variables
» Logical operators
» Relational operators

Reading assignment

Gilat, 6.1 and 6.2

ME 349, Engineering Analysis, Alexey Volkov 51

1.7. MATLAB relational operators, conditional statements, and selection structures |

Why do we need branching?
» Now we know how to perform computations with various data in the MATLAB.
» We also need to know how to make decisions when analyzing data.
"To make a decision” means branching, i.e. "to select an alternative from a few options."

Simple examples:

. . >
» Find maximum c of two values a and b. max(a, b) = {Z g ; b
» Set value x to zero if it is negative. a
: 1 x>0
» Calculate sign of value of x. : _
sign x=40 x=0
More complex examples involving selection: —1 x<0

» Finding of maximum element of an array.

» Sorting of elements of an array in the ascending order.

Making decisions implies that we
» Have two (a few in the general case) alternative paths of computations.

» Have a condition, which can be either valid (true) or invalid (false). This condition allows us
to chose one of the alternative computation paths.

To make a decision = to check the condition and then, based on the result of this check, chose
one of the alternative paths of computations.

ME 349, Engineering Analysis, Alexey Volkov 52

1.7. MATLAB relational operators, conditional statements, and selection structures |

To make a decision = to check the condition and then, based on the result of this check, chose
one of the alternative paths of computations.

Example: Find maximum c of two variables a and b.

Rectangle = regular command
Rhombus = Binary branching of the algorithm based on the result of the condition check

Flowchart of the algorithm: Code:

Definition of aand b

Yes: a < b is True No: a< b is False ifa<b
Condition c=b
_ else
Alternative e a
Paths: | "y
Branching

T

ME 349, Engineering Analysis, Alexey Volkov 53

1.8. MATLAB relational operators, conditional statements, and selection structures |

Example: Find maximum c of two variables a and b.
Flowchart of the algorithm: Code:

Definition of aand b

Yes: a < b is True No: a< b is False ifa<b

Condition c=b
. else

Alternative o a
paths end

T

In order to make decisions/do branching in the code we need

» Relational operators (<, >) that allow us to formulate conditions, e.g. to compare values.
» Logical variables that can keep the results of checking the conditions.
» Logical operators for manipulating logical values and composing complex conditions.

» Selection structures in the programming language (if-else-end in the example above), which
allow us to choose one of the alternative paths of computations.

ME 349, Engineering Analysis, Alexey Volkov 54

1.7. MATLAB relational operators, conditional statements, and selection structures |

Logical variables and logical operators
Logical variable can take only two logical values: True and False.

In MATLAB, logical variable takes numerical values: Non-zero means True, O means False.
Any numerical variable in MATLAB can be treated as a logical one.

V V V V

Logical operators are operations with logical values, which return logical values and
implement the Boolean logics (algebra) that is the low-level basis of all computations in
digital computers.

» Rules about four logical operators, and, or, xor, and not can be summarized in a truth table

INPUT OUTPUT
A B AND OR XOR NOT NOT
A&B AB (A,B) ~A ~B
false false false false false true true
false true false true true true false
true false false true true false true
true true frue true false false false

Problem1.8.1:a=-1;b=0;c=-2*xor(a,b)+((a| b)&~a). Result ? Why ?

1.7. MATLAB relational operators, conditional statements, and selection structures |

Relational operators

» Relational operators make a comparison of two arithmetic expressions and calculate the
result of the comparison in the form of a logical value.

1 <= : Valid

¥ AR < =< : Invalid

<= Less than or equal to <

> Greater than > Ex: rlnz%es:

>= Greater than or equal to > b =-12.0009

== HuaLi i ;zzz:\bs(b)

- Not equal to o= e=a<abs(b)&a<=0

» There are strict rules that define the priority (order of evaluation) of all operations and
operators in the MATLAB, see Gilat, page 178. If we are not sure about the default order of
evaluation of expressions, we must use parenthesis ‘()" in order to set the order manually.

» Logical/Conditional expression is an expression with arithmetic operations and logical and
conditional operators.
Example:a=1,b=3;c=(b<a)&a.

ME 349, Engineering Analysis, Alexey Volkov 56

1.7. MATLAB relational operators, conditional statements, and selection structures |

» Combination of logical and relational operators allows one to combine simple conditions into
complex ones.

Problem 1.7.2: Introduce logical variable Flag which is true if and only if a < x < b (x is within
the interval (a,b) orx = b)
x
‘ a b
Solution 1: Flag=(a<x)&(x<=b)
Solution 2: Flag = a <x & x <= b % Relational operators have higher priority than logical ones
Solution 3: Flag=and (a<x,x<=b)

Problem 1.7.3: Introduce logical variable Flag which is true if and only if x < aorx > b (x is
outside the interval [a, b])

—a b-x

Solution 1: Flag=(x<a) | (x>b)
Solution 2: Flag=x<a | x>b
Solution 3: Flag=or(x<a,x>b)
Solution 4: Flag=~(a<=x&x<=b)

ME 349, Engineering Analysis, Alexey Volkov 57

1.8. MATLAB relational operators, conditional statements, and selection structures i

» Conditional structure if-else-end (two alternative paths)
» Conditional structure if-else-end (many alternative paths)
» Nesting of selection structures

» return command

Reading assignment

Gilat, 6.2, 6.3, and 6.5

ME 349, Engineering Analysis, Alexey Volkov 58

1.8. MATLAB relational operators, conditional statements, and selection structures i

if-else-end structure (two alternative paths, arbitrary condition)

Flowchart
l """ MATLAB program.

if conditional expression

if _
Fakie statement Group 1 of
MATLAB commands.
else B
A J =z
Commands Commands | Group2 of
group 2 group 1 MATLAB commands.
> end end)
______ MATLAB program
Y
If Group?2 is empty, keyword else is omitted
Flowchart
l MATLAB program.

Tmc --------

Commands| = ...

i MATLAB program.

—b-l end e

if conditional expression
False
v | A grouD OF
MATLAB commands.

Example: Calculation of minimum of two
real numbers

function[res]=min(a, b)

ifa<b B Condition
res=a, B Groupl
else
res=b; B Group?2
end
/] end

function[res]=min(a, b)

res=b;
ifa<b B Condition
res=a; B Groupl
end
end

» Condition can be an arbitrary expression

ME 349, Engineering Analysis, Alexey Volkov

59

1.8. MATLAB relational operators, conditional statements, and selection structures |

If-elseif-else-end structure

(many alternative paths, arbitrary condition)

Flowchart

if
statement

Commands
group 3

........ ik 168

nnnnnnnn GrOup 2 of

........ Giroti 3 of

........

MATLAB commands.

MATLAB commands.

MATLAB commands.

Example: Calculation of the
sign of a real number.

function [res] = sign (x)
ifx<0

res=-1;
elseif x>0

res=1;
else

res=0;
end

end

Total number of branches (groups) = Total number of conditions + 1

ME 349, Engineering Analysis, Alexey Volkov

60

1.8. MATLAB relational operators, conditional statements, and selection structures i

Problem 1.8.1: Conversion energy into Joules 1 cal =0.239 |

function [res] = GetE_J (E, Unit) 1eV=6.24e+18)
%GetE_J Converts energy to Sl units (Joules)
if strcmp (Unit, 'J')

res=E; f(x)
elseif strcmp (Unit, 'cal')
res=E/0.239; (x—1)2+y2=1
elseif strcmp (Unit, 'eV')
res=E /6.24e+18 ;
else
res = NaN ;
end
end
X
Problem 1.8.2: Program function f(x) given by the plot
function [F] = CFun (x)
ifx<0.0
F=0.0; In order to execute such user-defined function
elseifx < 1.0 to an array one can use arrayfun function:
F=sqrt(1.0-(x-1.0)72); x=[-3:0.01:3];
else L y = arrayfun (@CFun, x);
and . pl<_>t (xy)
and axis equal

ME 349, Engineering Analysis, Alexey Volkov 61

1.8. MATLAB relational operators, conditional statements, and selection structures i

» if-else-end structures can be nested in arbitrary combinations.
» Nesting means placement of one structure inside another.
Problem 1.8.3: Solve problem 1.8.3 using nested if-else-end

File FFunNestedif.m

function [F] = CFunNestedIf (x)

if x<0.0
F=0.0:
else
ifx<1.0

else

end
end
end
Alternative solution

F=sqrt(1.0-(x-1.0)"2); @

F=1.0;

function [F] = CFun (x)
if x<0.0
F =0.0; return;
elseif x> 1.0
F =1.0; return;
end
F=sqrt(1.0-(x-1.0)"2);
end

function [F] = CFun (x)
if x<0.0
F=0.0;
elseif x< 1.0
F=sqrt(1.0-(x-1.0)"2);
else
F=1.0;
end
end

» Here we use command return
in order to immediately terminate
the execution of the function (not
necessary for the exam)

ME 349, Engineering Analysis, Alexey Volkov

62

1.9. MATLAB loops

» Pre- and post-condition loops
while-end loop
for-end loop

YV V V

Calculation of mean and standard deviation of tabulated
data

Sorting

YV V

Calculation of a polynomial function

Reading assignment

Gilat, 6.4-6.6

ME 349, Engineering Analysis, Alexey Volkov 63

1.9. MATLAB loops

Why do we need loops?

In many problems, we need to repeat some commands.
Two common situations:

» Analyzing large arrays of data, we often perform similar operation on every element of
arrays.
Example: Calculations of the average value of N elements of array X

1.Xa=0.0 N
2. Repeat Xa=Xa+ X[i]fori=1,2,3,...,N % :X1 + X, + -+ Xy _ i=1Xi
3. Calculate average Xa=Xa /N @ N N

» Some calculations involving only scalar variables require iterations.
Example: Calculation of the factorial n! = n(n — 1)(n — 2) ...2 1 can be performed as:
Fact=1; Fact = Fact * 2 ; Fact = Fact * 3; ...
or
1. Fact=1
2. Repeat Fact=Fact *ifori=2,3,...,n

Algorithmic structures called loops provide us with the possibility to repeat some portions of
codes or to perform multiple passes of the same code.

ME 349, Engineering Analysis, Alexey Volkov 64

1.9. MATLAB loops

Loops

» The loop is a part of the code that is repeatedly performed if some condition is satisfied.

» Any loop includes at least two parts: Condition and Bodly.

» Condition is used to determine that the passes of the body of the loop should be ceased after
some number of passes. For this purpose, condition should include some variables, which
values are modified within the body of the loop.

» Flowcharts of loops:

Pre-condition 4
loop:

Post-condition
loop:

Body may be Body will be
inaccessible executed at
least once

» Pre-condition and post-condition loops are different by the order of condition and body.

» The MATLAB has only pre-condition loops. Using if-else-end structure along with special
break and continue commands (not necessary for the exam) allow us to turn a pre-condition
loop into the post-condition one and vice versa.

ME 349, Engineering Analysis, Alexey Volkov 65

1.9. MATLAB loops

while-end loop

» while-end loop is the general-purpose pre-condition loop.
» Condition is an arbitrary logical statement.
Flowchart

Problem 1.9.1: Write function FactorialW that calculatesn! = n(n—1)(n—2) ...21

function [Res] = FactorialW (n)
%Factorial W Calculates the factorial of the integer value n

Res=n;

i=n-1;

whilei> 1 B Condition
Res=Res *i; I Body
i=i-1;

end

end

Code

while cond
body
end

ME 349, Engineering Analysis, Alexey Volkov

66

1.9. MATLAB loops

for-end loop
» for-end loop is the pre-condition loop that is designed to execute the body of the loop a

predetermined number of times.

» for-end loop includes definition of the integer loop index variable that serves to count the

number of times.

» for-end loop is often use to make calculations with elements of arrays.
» A condition of a special form involving the loop index variable is used.
Flowchart

4
k is the loop index variable. f

fis the value of k in the first pass.

t is the value of k in the last pass.

s is the increment of k between passes.
Negative increments are available.

Code

for k = f:s:t
body
end

Special cases:
» k=ftmeanss=1.

The loop index
variable
should not be
re-defined in
the loop body!

» if t = fthe loop is executed once.
» iff>tands>0orf<tands<O0,the loop is

not executed.

» k=[1712-5]: Loop will be executed for

the specified values of k.

ME 349, Engineering Analysis, Alexey Volkov

67

1.9. MATLAB loops

Problem 1.9.2: Solve problem 1.10.1. using for-end loop
File FactorialF.m
function [Res] = FactorialF (n)

Res=1;

fori=2:n

Res =Res *i;

end

end

Calculation of mean and standard deviation of tabulated data
Let's assume that we have distribution of some variable given in a tabulated form:

[T I P A e e
X X, X, . X, . Xy

Three numerical characteristics are systematically used for analysis of such distribution.

Mean u or expectation E (X) is the arithmetic mean of values in the table:

N
X1 +X2 +X3++XN_ 1ZX
N CNLTT

u=EX)=

=1

Mean gives us value around which the most of points in the table is concentrated.

ME 349, Engineering Analysis, Alexey Volkov

68

1.9. MATLAB loops

Variance 2 = V(X) is the arithmetic mean of squares of deviations of individual values from
the mean:

g2 =V(X) =

N
Xy —w)? + (X, — lltv)z S U D %Z(Xi —).
=1

Standard deviation o is equal to
o = V(X).

Standard deviation is the measure of deviation of values in the table from the mean. The larger
the standard deviation, the broader distribution of values in the table around mean.

It is convenient to calculate variance in the form:

N N N
1 1 1
o2 =V(X) = NE(XE — 2uX; + p?) = NEXE — ZMNZXL- + u?
i=1 =1 i=1

or

N
1
o2 =V(X) = NZXE — u?.
i=1

ME 349, Engineering Analysis, Alexey Volkov 69

1.9. MATLAB loops

Problem 1.9.3: Write a function MeanStd that calculates the mean and standard deviation of
values in the table given by array x

File MeanStd.m

function [Mean Std] = MeanStd (X)
[mN]=size(X); % Here we assume that m = 1, i.e. x is a row vector

Mean = 0.0; ~
Std = 0.0; 1
fori=1:N :”:NZXL'-
Mean = Mean + X(i); Nl
Std = Std + X(i)*2; , 1 5 5
end o~ = NZXL — Uu-.
i=1

Mean = Mean / m;
Std =sqgrt (Std / N - Mean”2);
end

Note: build-in MATLAB functions mean (x) and std (x) can be used in order to calculate mean
and standard deviation of tabulated data.

ME 349, Engineering Analysis, Alexey Volkov 70

1.9. MATLAB loops

Problem 1.9.4: Let's calculate the mean and standard deviation for the case when among

N = 100 values we the have only three values 0, +1, and -1 in the table:

N; values are equal to -1;

alue . N N — 2N N
N, values are equal to +1; 1 1 ;

- ® ° ®
N — 2N, values are equal to O;

Solution of the problem is given in the file Problem 1 9 4.m.

if N1 =10then Meanl =0Std1 =0.4472

if N1 =30then Mean2 =0 Std2 =0.6325

if N1 =40 then Mean3 =0 Std3 =0.8944

Value of the standard deviation increases with increasing number of points with values +1 and

approaches the intuitively expected value 1 when N; approaches 50.

1.9. MATLAB loops

Sorting

Problem 1.9.5: Write a function Sort that sorts elements of the array in the ascending order.

File Sort.m
function[y] =Sort (x)
Yy =X;
[nm]=size(x); % Here we ass
fori=1:(m-1)
forj=(i+1):m
if y(i) > y(j)
a = y(i);
y(i) = y();
y(j) = a;
end
end
end
end

ime thatn=1,i.e. xis a row vector

1420313 74

1. Compare x(1) step-by-step with x(2), x(3), ...
if x(1) > x(i), swap x(1) and x(i)
Now x(1) is the min. element of the array

(Tala] Jal7]a

2. Compare x(2) step-by-step with x(3), x(4), ...
if x(2) > x(i), swap x(2) and x(i)
Now x(1)<x(2)< ---.

G 1 | [sl7]a

3. Continue these steps for all elements until x(m-1)

ME 349, Engineering Analysis, Alexey Volkov

72

1.9. MATLAB loops

Example: Perform sorting of array x=[1, -2, -3, -4] in the ascending order.

function [y] =Sort (x)
Yy=X,
[nm]=size(x);
fori=1:(m-1)

forj=(i+1):m
if y(i) > y(j)

a =y(i);
y(i) = y(j);
y(j) = a;

ene NN EEEN
end
1 -2 1 -3 -4

Individual rows in the table below show contents of
array y after every step of sorting, i.e., after executing
of if-else structure ag given values of i and j

end 2
end 3 3 1 2 -4
4 N R NS B
2 3 4 2 1 -3
4 4 e |4 |2
3 4 A e |

ME 349, Engineering Analysis, Alexey Volkov 73

1.9. MATLAB loops

» If-else-end, while-end, and for-end structures can be nested in arbitrary permutations
» Nested structure must be placed completely inside it’s external structure.

» Function [n m] =size (x) returns the number of rows, n, and columns, m, in array x.

Polynomial function

The polynomial function of degree N is the function

N
fn(x) = Cyx™ + Cy_gxV 1+ 4+ Cox? + Cix + Gy = Z Cnx™ (1.10.1)
n=0
where C; are arbitrary coefficients.

For the computationally efficient calculations, we can re-write equation in the form
fnG) = (.. (Cyx+Cy_q)x+ -+ C)x+Cx+Cy

e.g.
f3(X) == C3 XB + szz + Clx + CO = ((CS.X + Cz)x + Cl)x + CO

» A polynomial function is given by its degree N and the array of coefficients C; .
» Polynomial of degree N has N + 1 coefficients.
» We will use row vector C=[C_NC_N-1...C_ 2C_1C_0]in order to store coefficients.

ME 349, Engineering Analysis, Alexey Volkov 74

1.9. MATLAB loops

Problem 1.9.6: Develop a function PolyVal (C, x) which calculates a polynomial function.
File PolyVal.m
function p = PolyVal (C, x)

[M, N1]=size(C); % N1 isthe degree of the polynomial + 1

p = C(1);
fori=2:N1
p=p*x+C(i);
end
end

Calculation of polynomials in the MATLAB

» The build-in polyval function can be used in order to calculate the value of the polynomial
function in the form given by Eq. (1.10.1):

C=[CNCN-1..C2C1CO0O];, %Thisisthe array of coefficients
f=polyval (C, x); % The degree of the polynomial is determined
% by the number of coefficients

Example: Calculation of the polynomial f(x) = =2+ 3x —25x%atx = —7:
C-]-253 7|

f=polyval (C, -7) ;

Myf = PolyVal (C, -7) ;

ME 349, Engineering Analysis, Alexey Volkov 75

1.11. Summary

For the exam we must know how

To perform arithmetic calculations in the MATLAB command window.

To evaluate expressions containing conditional (>, <, etc.) and logical (|,&,etc.) operators.
To create and manipulate one-dimensional arrays.

To use vectorised mathematics for calculations with arrays.

To create, edit, and run scripts and to comment scripts.

To create, edit and run functions with comments.

To use if-elseif-else-end, while-end, and for-end algorithmic structures.

To plot two- and three-dimensional plots, to format plots, and to export plots to graphic files.
To calculate means and standard deviation of tabulated data.

To sort elements of an array in ascending/descending order.

To plot a function given by a sketch using arrayfun function.

To calculate arbitrary polynomial function and plot its graph.

Keywords: function, end, if, elseif, else, while, for, return.

Commands: help, lookfor, clc, clear, format, print

YV V V|V V V VY YV VY VY VYV VY

Functions: sqrt, sin, ..., atan2, linspace, size, sum, min, max, dot, cross, plot, line, semilogx,
semilogy, loglog, xlabel, ylabel, text, axis, arrayfun, strcmp, mean, std, polyval.

ME 349, Engineering Analysis, Alexey Volkov 76

