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Fourier Analysis

Reading:

Kreyszig, Advanced Engineering Mathematics, 10th Ed., 2011
Selection from chapter 11
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5.1. Fourier analysis. Motivation: Analysis of complex periodic and non-smooth functions

Analysis of complex functions is often based on their representation in the form a series -
infinite sum of simple functions.

Example: Taylor expansion - Representation of a function f(x) in the form of the power series

!/ a I a
Fo) = f@+ 2 - 0y + 5P -y +
Let's consider a periodic and non-smooth function
y

P R e R R
e

What if we will try to use the Taylor expansion?

In the point a = 0 we obtain the Taylor series in the form
flx) =x
This is great (accurate results for our f(x)) inside a period, but becomes meaningless outside

the period since the function is discontinuous. The Taylor expansion can be applied only inside
intervals where the function is continuous and has all continuous derivatives.

The major motivation of the Fourier analysis is to develop an approach for series representation
of (almost arbitrary) discontinuous periodic and non-periodic functions.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 3



5.2. Periodic functions. Basic trigonometric function. Trigonometric sum and series

Many phenomena in science and engineering are \ /
periodic and described in terms of periodic functions. 0 W 2n 0o \J * \J 2

ExamPIES: cos X cos 2x

1. Mechanical oscillations (mass-spring systems
- | ARG vt e s/
pendulums, strings, membranes). ) "

2. Oscillations in electrical circuits.

3. Periodic motion of planets. Ax)

4. Wave motion (acoustic waves, electromagnetic — k —
waves, radio, etc.).

5. Oscillations of individual atoms in crystalline solids. -T 0 T 2 x

Periodic function f(x) is a function which satisfies the k

following condition

forallx:  f(x+P) = f(x) R N8 1SN DL
A

where parameter P is called the period. \/ \

Notes: | 2

1. Obviously, if P is a period, then nP is also the period for function f(x). By default, we will
use the term period in order to denote the minimum period of function f(x). The minimum
period is also called the fundamental period.

2. ltis sufficient to study any periodic function only at any interval x € [a, a + P].

3. Any function given at finite interval x € [a, b] can be periodically extended for any x with
the period P = b — a.

X
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5.2. Periodic functions. Basic trigonometric function. Trigonometric sum and series

Let's consider the functions for fixed parameter w
E,(x) = a, cos(nwx) + b, sin(nwx)

E,(x) is the basic trigonometric function forn = 0,1, ... and a,, and b,, are constant coefficients.
Properties of F,,(x):
1. Common period for all F,(x) is P = 2n/w, w is the fundamental angular frequency.

Proof: F,,(x + P) = a, cos(nwx + 2mn) + b, sin(nwx + 2nn) = E,(x)

2. Let's introduce the magnitude 4,, = /a2 + b2 and phase ¢,, = arctan(b,/a,,). Then
E,(x) = A,, cos(nwx — @,) = A, sin(nwx + ¢,)

Proof: A,, cos(nwx — ¢,) = A,,(cos ¢,, cos(nwx) + sin ¢,, sin(nwx)) = F,(x).
3.1f P = 2L, L is the half-period, then w = 2n/P = /L and

Tnx . mnx
E,(x)=a, cos —— + b, sin——
N-terms trigonometric sum is
N N
Sy(x) = 70 z = 70 + 2 a, cos(nwx) + b, sin(nwx)]
. . . ) n=1 =1 P is the fundamental
Trlgonometrlc series Is \ per|od for SN (x) and S(x)
co (0]
a
S(x) = Al,im Sy(x) = 70 z = ?0 + z |a,, cos(nwx) + b, sin(nwx)]|
—00
n=1 n=1
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5.2. Periodic functions. Basic trigonometric function. Trigonometric sum and series

Two basic applications of the trigonometric sum and series

1. In many mathematical problems, trigonometric sum or series represents an accurate solution
of the problem. In this case, w and coefficients a,, and b,, are defined from equation to be

solved and initial/boundary conditions.
Example: Sturm-Liouville problem (will be considered later)
2. Any periodic function with period P can be represented in the form of trigonometric series.

f(x) = % + nz::l E, (x) = % + ;[an cos(nwx) + b, sin(nwx)]

This is similar to the representation of a function in the form of a power series
f(xX)=cy+ci(x—a)+c,(x—a)?+

where coefficients should coincide with the coefficients given by the Taylor expansion

fo = @+ ) + D ey

In order to introduce the representation of a function in the form of a trigonometric series, we
need to know how to define coefficients a,, and b,, (w is not arbitrary, it is given by the period:

w = 2r/P
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5.3. Orthogonal system of functions. Trigonometric system of functions

Let's consider a system of functions f,(x), f1(x), f,(x),... : frn(x), m=0,12,..given at
interval x € [a, b]. The system of functions is called orthogonal in [a, b] with respect to the
weight r(x) > 0 if

b

(fo fin) = Jr(x)fn(X)fm(x)dx = {

a

0, n#+m
Ifmll?2, n=m
b

Ifinll? = j (O £2()dx > 0

a
The trigonometric system of functions at fixed w is the system

1, cos wx, sin wx, cos 2wx , Sin 2wx, ..., COS NwWX , Sin nwx, ....

Proof:
a+pP

52 = [ 12dx=P

a
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5.3. Orthogonal system of functions. Trigonometric system of functions

In order to calculate other integrals, we need to use a number of trigonometric equations that
all follow from

cos(a + B) = cos(a) cos(B) — sin(a) sin(B)
sin(a + B) = sin(a) cos(f) + cos(a) sin(fB)

Let’s first consider the case when n = m. Eq. (5.3.2) results in

(5.3.2)

5 1 + cos2a . 5 1 —cos2a _ sin 2«
Cos” a = ) sin“ a = ) sinacosa =
2 2 2
Then
a+P a+P
5 1 4+ cos(2nwx) P
f cos”(nwx)dx = J dx = —
2 2
a a
a+P a+P
-, 1 — cos(2nwx) P
j sin” (nwx)dx = f dx = —
2 2
a a
a+pP ; a+P
j sin(nwx) cos(nwx) dx =7 f sin(2nwx) dx = 0
a a
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5.3. Orthogonal system of functions. Trigonometric system of functions

Now let's consider f:+P cos(nwx) cos(mwx) dx at n # m. Eq. (5.3.2) results in

cos((n + m)wx) = cos(nwx) cos(mwx) — sin(nwx) sin(mwx)

cos((n — m)wx) = cos(nwx) cos(mwx) + sin(nwx) sin(mwx)

Sum of these two equations results in

cos(nwx) cos(mwx) = %[cos((n + m)wx) + cos((n — m)wx)]

Then
a+P 1 a+P
f cos(nwx) cos(mwx) dx = 5 f [cos((n + m)wx) + cos((n — m)wx)]dx =0

Similarly (see Kreyszig, page 479) one can prove thatatn + m
a+Pp a+P

j cos(nwx) sin(mwx) dx = 0, j sin(nwx) sin(mwx) dx = 0

a a
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5.4. Fourier and generalized Fourier series

Let's consider the system of functions f,(x), f1(x), f>(x),... which are orthogonal at [a, b] with
respect to weight 7(x) and assume that some periodic function with period P = 2n/w = b — a
can be represented in the form:

(0]

FO)= ) ap fn) (5.4.1)

m=0

The coefficients a,, in Eg. (5.4.1) can be found with the following theorem:
Theorem:

If function f(x) can be represented in the form given by Eq. (5.4.1), then coefficients in this
series are unique and can be found with the following Euler formulas:

)
® G2 g

b
f () f () fn(x)dx (5.4.2)

a
Proof:

Let's multiply Eq. (5.4.1) by r(x) f,,(x) and integrate it from a to b:
b

00 b
| rf@h@ax = an [ ref0 G
m=0 a

a
or
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5.4. Fourier and generalized Fourier series

(0.0]

(Fof) = ) am oo fon)

m=0

Now let's use the orthogonality: (f;,, f,,) = 0 if n # m. Then

(fs fn) = an(fn, fn) = an”fnllz-

The representation of the function f(x) in the form given by Eq. (5.4.1) where coefficients are
calculated with Egs. (5.4.2) is called the generalized Fourier series.

Fourier series

Now let’s apply our general theorem to the trigonometric system of functions
fo(x), f1(x), fo(x): 1,cos wx, sin wx, cos 2wx , sin 2wx, ..., COSNWX , Sin NWX, ....
where P = 2m/w = 2L is the fundamental period of function f(x).

According to Eq. (5.3.1) |foll? = P = 2L, ||f;n]I? = P/2 = L at m > 0. Then let’s re-write Eq.
(5.4.1) in the form

_ N o) (fo) | N Fofon) Uﬁ > )
ON TN R TA AN T L mz
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5.4. Fourier and generalized Fourier series

In the sum, let’s group together cos and sin functions of the same argument. Then

Fo =727

2 P/2

= (f, cos(na)x))
+;l P2

(f, sin(nwx))
P/2

cos(nwx) +

sin(nwx)

Now let’s introduce the Fourier coefficients a,, and b,, of function f(x):

O
P/2
These are Fourier
{ coefficients of function } (f COS(TL(UX))
f) An = P/2
(f, sm(na)x))
" P2

Then

[ This is the Fourier

a
series of function f(x) % f(X) — 70 + z [an COS(Tl(UX) + bn sin(na)x)]
n=1

a+P

= % f f(x)dx

a+P

f f(x)cos(nwx)dx n=12.. (54.3)

a+P

j f(x) sin(nwx) dx

(5.4.4)

The representation of function f(x) in the form (5.4.4) where coefficients are calculated with
Egs. (5.4.3) is called the Fourier series of function f(x).

ME 501, Mechanical Engineering Analysis, Alexey Volkov

12



5.4. Fourier and generalized Fourier series

Different forms of the Fourier series P=2n/w=2L
If we use w:
a
f(x) = 70 + z [a,, cos(nwx) + b, sin(nwx)]
a+2m/w a+2n/_w a+2n/w
w w w :
o = — J f(x)dx,a, = — j f(x) cos(nwx) dx, b, = — J f(x) sin(nwx) dx
a a a
If we use P:
0 = 2nnx 21TNnx
f(x) = z [a,, cos + b, sin ]
a+P aip a+P
2 2 21nx 21TNnXx
= Ef f(x)dx, a, Ff f(x) cos dx, J f(x) sin dx
a
If we use L:
nx nx
f(x) =— + Z [a, COS —— + b, sinT]
a+2L a+2L a+2L
1 nx nx
=7 j f(x)dx, j f(x)cos—dx f f(x)sm—dx
a

ME 501, Mechanical Engineering Analysis, Alexey Volkov 13



5.4. Fourier and generalized Fourier series

In terms of magnitude and phase:

A, = /arzl + b2, ¢, = arctan(b,/a,)

flx) = 70 + z A, cos(nwx — @,,) —70 + z Aysin(nwx + @;)

Example: Let's consider the periodic function given by the plot

: 177 : : P=2L=1w=mn
/_1 1 / At periodx € (—1,1],f(x) = x
; : : ' X
/ S /

Fourier coefficients according to the Euler formulas (5.3.2)

1 1
ay = jxdx =0,a, = jxcos(nnx) dx =0
-1 -1
1 1 1
1 1 x=+1
b, = Jx sin(nmx) dx = —— jx dcos(nmx) = — —|[x cos(nnx)| — jcos(nnx)dx]
n n
-1 -1 -1
2 2(_1)n+1
= ——cos(nm) =
n mn
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5.4. Fourier and generalized Fourier series

© 2(—1 n+1
flx) = Z ( m’)z sin(nmx)

n=1 P=2n,L=m,0w=1
ey : 1 Py
: N LN i
. i | ¥ J & _
b N 2 SR N 1w, AT T
___.-f_ _F____.-_.-; '.-"':-: o
L - e

We have obtained good approximation of a function with discontinuities valid at any x!

What if we will try to use the Taylor expansion?
f'(a) f"(a)
fx) = f(a) +

i Fra
In the pointa = 0 we have

(x —a)* +

fl) =x

This is great (accurate results for our f(x)) inside a period, but becomes meaningless outside
the period if the function is discontinuous.

Conclusion: The Fourier expansion provides good approximation ax arbitrary x of almost any
discontinuous (but periodic functions), while the Taylor expansion can be applied only inside
intervals where the function is continuous and has all continuous derivatives.
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5.4. Fourier and generalized Fourier series

Jean Baptiste Joseph Fourier (21 March 1768 — 16 May 1830) was a French
mathematician and physicist best known for initiating the investigation of
Fourier series and their applications to problems of heat transfer and vibrations.
The Fourier transform and Fourier's Law are also named in his honor.

f(t) = %o + z [a,, cos(nwt) + b, sin(nwt)]

2

n=1
But was Joseph Fourier the first who "invented" the Fourier Series?

“ ", Claudius Ptolemy (c. AD 90 — c. 168) Epicycle Imperfections in  the

was a Greco-Egyptian astronomer, \JG Ptcolemalc system were
23 Who  invented the  Ptolemaic ::«Ju | =~ d|scover§:d through
. geocentric model of universe, where /= ‘».‘ obser:atlonlf/lacculmuliatec:

i each planet is moved around Earth ! X 1| ngr |Ime. .orle eve.:hc.)
S by a system of two spheres: one 1 o 1 .plcyc es (circles within
b . circles) can be added to

B called its deferent, the other, its . K h o X
| epicycle. / ~o__- the model to match more
accurately the observed

y
Deferent planetary motions.

» Cosine and sine functions parametrically define the circular

R motion.
x » Representation of the visible trajectory of a planet in the
x(t) = R cos wt form the system of deferent + epicycles is equivalent to the
y(t) = Rsinwt expansion of the trajectory into the Fourier series.
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5.5. Fourier expansions for functions satisfying the Dirichlet conditions

Our goal is to formulate conditions for a function f(x) which guarantee that the Fourier series
for this function exists and converges to the values of the function. Such conditions are known
as the Dirichlet conditions.

Let's consider some periodic (real value) function f(x) with period P. We say that this function
satisfies the Dirichlet conditions if

1. This function is a piecewise monotonous function in any interval [a, a + P] (This means that
f (x) has a finite number of extrema in this interval).

2. This function is a piecewise continuous function in any interval [a, a + P] (This means that
f (x) has a finite number of discontinuities in this interval).

3. This function has finite limits in the ends of the interval [a, a + P] and finite left- and right-
hand limits at any discontinuity (i.e. all discontinuities are jump or step discontinuities).

Left-hand limit :

L™= flro—=0) = lim f(xo—h)

X Right-hand limit :

L* = flro +0) = lim f(xo+h)
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5.5. Fourier expansions for functions satisfying the Dirichlet conditions

Example 1: A function satisfying the Dirichlet conditions

Example 2: Function sin(1/x) does not satisfy the Dirichlet conditions, since it is not a
piecewise monotonous function in any interval containing O.

1 T
08 r\

06

0.4

0z

]

0.2
0.4

-0.6

-0.8 u
R 1

1 1 1 1 1 1 1
a 0.1 02z 03 04 08 0B 07 og 0% 1
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5.5. Fourier expansions for functions satisfying the Dirichlet conditions

Theorem; Dirichlet theorem iiiinuiinnssiinnn g HHHTHIER T

Dirichlet

ME 501, Mechanical Engineering Analysis, Alexey Volkov 19



5.5. Fourier expansions for functions satisfying the Dirichlet conditions

Example:

I SN ” | : P=2L=1lw=m
/_1 1 / At period x € (—1,1],f(x) = x
: ' : X

n+1

0 0) 2 .
flx) = Z ( T[T)L sin(nmx)

We see that:

SGO) = S 1f(x = 0) + fx +0))
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5.6. Complex Fourier series

Let’s assume that some P-periodic function f(x) can be represented in the form of the Fourier
series

a
flx) = 70 + Z [a,, cos(nwx) + b, sin(nwx)] (5.6.1)
a+P a+P n=t a+P

ag = % j f(x)dx,a, = % f f(x) cos(nwx)dx, b,= % j f(x) sin(nwx)dx,n=1,2...

Let’s show that every a,, cos(nwx) + b,, sin(nwx) can be represented in a form containing
complex numbers using the Euler formula for the complex exponent:

e = cos + ising (5.6.2)
Then
eina)x + e—inwx eina)x _ e—inwx
cos(nwx) = > , sin(nwx) = —i >
eina)x + e—inwx einwx _ e—inwx
a, cos(nwx) + b, sin(nwx) = a, > — ib, > =
(n — 10n einwx an + ibn e—inwx (5.6.3)
2 2
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5.6. Complex Fourier series

Now let’s introduce the complex Fourier amplitudes ¢;, (—o0 < k < 00):
a+P

f fx)e wx gy

a+P

Ch=—"7 f f(x)[cos(nwx) — isin(nwx)]|d
; a+P
C_p = u j f(x)[cos(nwx) + isin(nwx)]d
A
Co = 7

Now let’s insert (5.6.3) into Eq. (5.6.1). Then we obtain:

a+P

J f(x)e@Xdx

0 a+P

k=—o0

f(x) — Z c elka)x’ Cie :%f f(x)e—ika)xdx

Eq. (5.6.4) is the complex Fourier series of the P-periodic real-valued function f(x).

If the complex Fourier amplitudes are found, then :

a, =2Rec,=2Rec_, =Re(c_, +c,;)

b,=—2Imc,=2Imc_, =Im(c_,

_ Cn)

(5.6.4)

ME 501, Mechanical Engineering Analysis, Alexey Volkov

22



5.7. Fourier series of even and odd periodic functions

Function f(x) is called the odd function if

f(=x)=—=f(x)
Function f(x) is called the even function if
f(=x) = f(x).
Examples:
Odd functions: sin x, Even functions: cos x,
f(x) f(x)

a7 NP

/ _________ P o 1

Simple properties:

1.

If f(x) and g(x) are even functions and p(x) and g(x) are odd functions, then f(x)g(x)
and p(x)q(x) are even functions, f(x)p(x) is the odd function.

If p(x) is an odd function, then integral over any interval symmetric with respect to O is

equal to zero Variable change, y = —x, ]
a 0 a 0 -a in this integral
\
[ pax = [p@ax- [ pexax= [ peax+ [ peray=o

—a —-a 0 —-a 0
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5.7. Fourier series of even and odd periodic functions

Fourier expansion of an even P-periodic function f(x):

Let’s takea = —P/2 = —L:
Even Odd

1 [ 1 [ \ )
o =7 ff(x)dx, n =7 Jf(x) cos(nwx) dx, bn=z ff(x) sin(nwx) dx = 0,
- —L —L

(0]
Ao
f(X) = 7 + Z an cos(na)x) All ¢, are
n=1 purely real

For an even function, phase ¢,, = arctan(b,,/a,;) = 0; In the complex Fourier series ¢, = c_,.

Fourier expansion of an odd P-periodic function f(x):
Let’s takea = —P/2 = —L:

Odd Even
L L A L
1 1l | 1 (| \

Qo =7 ff(x)dx,: 0 a, = 7 jf(x) cos(nwx)dx =0, b,= 7 jf(x) sin(nwx) dx,
~L ~L . ~L

f(x) = 2 b, sin(nwx) [ All ;. (k > 0) are ]

n=1 purely imaginary
- ] —'<
For an odd function, phase ¢,, = arctan(b,,/a,) = s n the complex Fourier series ¢, = —c_,,.
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5.7. Fourier series of even and odd periodic functions

Even/Odd decomposition of a P-periodic function f(x):

Any function can be uniquely decomposed into a sum of even, f,(x), and odd, f,(x), functions:
f(x) = fe(x) + fo(x)
where

1 1
() =+ F0) () =F ) = f(=x)]

It allows one to introduce another form of the Fourier series:
(00]

Qo(e)
fe(x) = 26 + z Ap(e) COS(NWX)
n=1

fol) = Z ba(o) Sin(nwx)

Fo) =224

[an(e) cOs(nwx) + by o) sin(nwx)]
=1

where
a+P a+P

L
1 1 1
Qoge) = T j fe(x)dx, An(e) = T f fe(x) cos(nwx) dx, byy= I f fo(x) sin(nwx) dx
—L a a
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5.8. Fourier series of non-periodic function given at finite interval. Half-range series

Let’s consider a non-periodic function f(x) given at the finite interval x € [a, b] (|b — a| < )
and assume that f (x) satisfies the Dirichlet conditions.

Example:

f(V

Non-periodic f (x)

a—+ P

» Periodic extension g(x)

gfl//

X

f R —
a \ a+P \

Although f(x) is non-periodic, it can be expanded into the Fourier series. For this purpose we
need to periodically extend f(x) for arbitrary x. For instance, we can introduce a new periodic
function g(x) with the period P = b — a which is defined as follows:

This formal definition of g(x) is
not necessary for calculations of
a, and b,, because only values
of f(x)ata<x < a+ P will
be involved

g(x) =«

\

f(x_P[x;aD X >a (5.8.1)
f(x+P+Ple%aD x<a

where [a] is the integer part of the real number a.

The periodic extension g(x) satisfies the Dirichlet conditions and, thus, can be represented in
the form of the Fourier series. In the interval x € [a, b] the Fourier expansion of g(x) will
coincides with f(x) in all points except the discontinuities of g(x).
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5.8. Fourier series of non-periodic function given at finite interval. Half-range series

For any non-periodic f(x) given in a finite interval, there is infinitely large number of different
periodic extensions with different fundamental periods P = b — a.
Example:

f) ‘ h(x) — g(x) : Even extension

1 - - —-——-————-: e /T\ —————————
; ; ; 1) |

l X ; ! !
| 05 15 o5 | os

X

In particular, for any f(x) given at x € [a, b] one can introduce an extension g(x) which can be
either even or odd periodic function of the period P = 2(b — a) . The Fourier series for f(x)
obtained with the help of even or odd periodic functions are called half-range Fourier
expansions or series.

Let's first consider the case a = 0. Then we can introduce the even or odd periodic extension in
two steps:

1. First, we introduce an auxiliary function h(x) givenat —L <x < L,L = b — a.

a. For the odd extension: h(x) = {_;Ei)x) i Z 8
b. For the even extension: h(x) = {sz(_x)z) J; Z 8

i iodi i iven bv Fa (5 8 1)
ﬁZAeeond_W@mLmdue@arpengch@expan&on#ngioLh@xgg ..... by EQ.(o-0-1)

¢ 7
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5.8. Fourier series of non-periodic function given at finite interval. Half-range series

Example:
f(x) —> 0dd h(x) Even h(x)
1 1 _________ : |
) )
x — " X
0
___________ -1

If a #+ 0, then the odd or even extension can be introduced by two ways:

1.1fa > 0orb < 0 we can introduce an extended function in a way illustrated in the figure in
the previous slide.

2. In the general case, we can introduce a shifted function f (x) = f(x — a), which is defined in
0 < x < L = b — a and then apply our two-step algorithm from the previous slide to f (x).

The half-range Fourier expansions are convenient to use, since only half of all Fourier
coefficients should be determined: b,, = 0 for even periodic extensions, a,, = 0 for odd periodic
extensions.

Question: Which extension is better?

In general, the better results are obtained with an extension which removes the discontinuities
in g(x). Then, according to the Dirichlet theorem, the convergence of a,, and b,, to zero with
increasing n is faster and we can retain smaller number of terms in the Fourier sum in practical
calculations.
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5.8. Fourier series of non-periodic function given at finite interval. Half-range series

Example: f(x) ‘ 0dd h(x) Even h(x)

x=1

2[(=D"-1]

J T Of sin(nmx)dx] = )2

In this case the even extension is better, since it removes discontinuities and provides a,,~1/n?.

a, =2 j x cos(nmx) dx = — [x sin(nmx)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 29



5.9. Parseval’s identity

Many applications of the Fourier series use the following theorem:

Proof:
Let’s rewrite Eq. (5.9.1) using the following notation for the functions of the trigonometric

system: fo(x) =1, fi(x) = coswx, f,(x) = sinwx, etc.,, and dy = ay/2, d; = a4, d, = by, etc.

OO = ) dnfo0)
n=0

And then let's calculate the product

fix) = (i dnfn(x)> (i dmfm(x)> = i i A frn (X) A frm (%) (5.9.3)
n=0 m=0

n=0m=0
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5.9. Parseval’s identity

Now we can integrate Eq. (5.9.3) over a period'
a+P a+P

j Frode =Y Z dndh j FaCOfin ()

n=0ms=

But the trigonometric system of functions is orthogonal with respect to the weight r(x) =1, i.e.

a+p 0 n#+m

j fn(x)fm(x)dx = P n=m=2~0
a P/2 n=m>0

a+p

8

P

f f?(x)dx = Pd§ + > dz
a

Consequence: If we use the complex Fourier series

co

f(x) — Z Cpe eikwx

k=—o0

Then Parseval’s identity takes the form
a+P [0

5[ rreod= Y e

k=—c0

(5.9.4)
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5.9. Parseval’s identity

In order to prove it, let’s use the definition of ¢:
a, — iby a, + ib, ag

C_n:T, Co = —

Then [c,|? = [c_pl? = (a5 + b7) /4

ao
E lckl? = lcol? + E lcx |? = — + 2 E lci % = E (ai + bp)
k=—o0 k=—o00, k#0

Energy spectrum

Many applications of Parseval's identity are based on the interpretation of (a2 + b2)/2 as
energy (or power) associated with a particular term/oscillation in the Fourier series.

Example 1: Mechanical oscillations.
Assume that y(t) describes displacement of an oscillating mass in the mass-spring system.
Let's first consider a harmonic oscillation of an undamped system with the equation of motion

Y + wpy =0
The solution is y,, (t) = a, cos(w,t) + b, sin(w,t) (here w,, = nw) and the energy "stored" in
this harmonic oscillation is equal to (w2 = k/m,, y',(t) = w,[—a, sin(w,t) + b, cos(w,t)])

1 , 1 k [(v,")? a? + b2
En = Ekinetic T Epotential = Emn(Yn )% + Ek()’n)z = 2 nz + ( n) n—




5.9. Parseval’s identity

Thus, if we have a non-harmonic oscillation y(t) that can be represented as a superposition of
infinite number of harmonic oscillations (i.e. in the form of the Fourier series), the averaged
over a period energy stored in the oscillation y(t) is a sum of energies stored in the individual
harmonic oscillations (in every harmonic oscillation E,, = const and does not depend on time):

0 0 a+P
E_ En_ ap\? 1 5 5 _1 5
=)= g @ =5 [ v
n=0 n=1 a

Distribution of averaged energy over different oscillation frequencies is called the energy
(power) spectrum of oscillation y(t). In this regard, we say that any periodic function
(oscillation) has a discrete or point spectrum, since the energy of such oscillation is stored in
countably many isolated frequencies w,,.

E ® £

E4
® E,

E, ®

w

? e
w1 =W w3 = 3w

Example 2: Joule heat in electrical circuits. Let's consider a part of an electrical circuit with
resistance R and current I(t). Then the Joule heat dissipated during time dt is equal to dQ =
RI?dt. If we would calculate the Fourier coefficients for I(t), then value (a2 + b2)/2 s
proportional to the contribution of oscillation of frequency nw to the total electric power RI?.
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5.10. Application of the Fourier series: Solving ODEs, forced mechanical oscillations

Mechanical mass-spring system

Newton’s second law of motion:

my”=ZFi=F1+F2+F3

- &g P
= < <
S - < 1. Elastic restoring force (Hook’s law):
= = S 1 Fy = —k
Unstretched _L = § 1= T
spring o 5 O S k is the spring constant (spring stiffness)
N
Sysrt:;?t1 at ' : b ‘ 2. Damping (friction) force:
Syst F, = —cv'
y = y(t): Displacement iy 2 24
‘ 3. Input (driving) external force
F3 = T‘(t)
my" +cy' + ky =r(t) (5.10.1)

Undamped oscillation: ¢ = 0
Damped oscillation: ¢ # 0

Free oscillation: r(t) = 0
Forced oscillation: r(t) # 0
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5.10. Application of the Fourier series: Solving ODEs, forced mechanical oscillations

Solution for harmonic driving force (See Section 2.8)
We considered only the harmonic driving force, r(t) = F, cos w t, where w is the input angular
frequency

my'" +cy'+ky =Fycoswt

y(@) = yr(®) + ¥, (t)
In the case of damped oscillation (¢ > 0), vy, (t) = 0 when t — oo, so that (see Section 2.8)

y(t) - Yo (t)

Yp(t) = Acoswt + B sin wt (5.10.2)
2
m(wo —a)z) we I
Asto 2 N2y 2,2 g 2 N2y 2,2 “o= Im
(a)o —a))m+ca) (wo —w)m+cw

Using the Fourier series, we can generalize the solution for an arbitrary periodic driving force
r(t). Let's assume that

» 1r(t) is the P-periodic function which satisfies the Dirichlet conditions, and thus, can be
expanded into the Fourier series.
a

» Mean value of r(t) is zero: %ffﬂj r(x)dx = 70 = 0.

» 1(t) is the even function (only for the sake of simplicity, the general case can be considered).
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5.10. Application of the Fourier series: Solving ODEs, forced mechanical oscillations

Then (P = 2L):
0 L
nimt 1 nimt
t) = —_—, = — t —dt
r(t) Eancos 7 a, Lfr()cos 7
n=1 —L
From Eq. (5.10.1):
N ) - nmt
my” +cy +ky= Z p, COS—— (5.10.3)
n=1
Let's consider an equation for a single Fourier term n (w,, = nm/L):
MYm) + Yy + kYny = an cOs wpt (5.10.4)
The particular solution of the non-homogeneous ODE (5.10.4) is given by Eq. (5.10.2):
Vp(n)(t) = Ay cos wpt + By sinw,t
2
m (a)o — a)%) Wy, C
An = an 5 2 ) BTL = an 2 2
(a) — wz) m? + c2w? (a) — a)z) m? + c2w?
0 n n 0 n n
Since Eq. (5.10.3) is linear, the particular solution of this equation takes the form: (5.10.5)
yp(t) = z Vp(n)(t) = 2 (A,, cos w,t + B, sin w,t )
n=1 n=1

It ordeErtocheck that £6Y(5.103Yi5Y solution of (5.10.3): Substitute Eq. (5.10.5) into (5.10.3). *°



5.11. Application of the generalized Fourier series: The Sturm-Liouville problem. Solving the heat
conduction equation by the separation of variables

The boundary value problem for the second-order linear ODE:

[Pyl +[q(x) + Ar(x)]ly =0, a<x<)h, p(a),p(b) =0 (5.11.13)
kiy(a) + ky,y'(a) =0 (5.11.1b)
Ly(b) + Ly’ (b) = 0 (5.11.1c)

where k4, k,, 11, and [, are real numbers, is called the Sturm-Liouville problem.

Note: The Sturm-Liouville problem is important for solving PDEs with separating variables
(example will be considered below).

Any Sturm-Liouville problem has the trivial solution y = 0 (can be proved by substitution). The
fundamental property of the Sturm-Liouville problem, however, is a non-uniqueness of solution
at some particular values of A: At certain A, other, non-trivial (y # 0) solutions also exist.

If the Sturm-Liouville problem has a non-trivial solution y(x) at some A, such a A is called the
eigenvalue of the Sturm-Liouville problem, and y(x) is called the eigenfunction corresponding
to the eigenvalue A.

To solve the Sturm-Liouville problem means to find all pairs of eigenvalues and eigenfunctions.
Example:p(x) =1,q(x) =0,r(x)=1,a=0,b=m,k;=1,k, =0,l; =1,andl, =0
y" + Ay =0, y(0) = 0, y(m) =0 (5.11.2)

If A = —v? <0, then y(x) = c;e”* + c,e V™ and only the trivial solution (¢; = ¢, = 0) satisfies
the b.c. (boundary conditions) in Eq. (5.11.2)

If A = v% > 0, then y(t) = A cosvx + B sinvx and it can satisfy the b.c. in Eq. (5.11.2) if
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5.11. Application of the generalized Fourier series: The Sturm-Liouville problem. Solving the heat
conduction equation by the separation of variables

A=0, VT = NT, n=20,4+1,4+2,...
but n = 0 gives us again the trivial solution and should be excluded.
Thus, the pairs of eigenvalues and eigenfunctions for the problem (5.11.2) are
A, = n?, y,(t) = Bsinnx, n=123,.. (5.11.3)

Note: Coefficient B in the eigenfunction is an arbitrary non-zero value. Thus, every
eigenfunction for a given A is non-unique (This is similar to the non-uniqueness of eigenvectors
for a given eigenvalue in the matrix eigenvalue problem).

The Sturm-Liouville problem is closely related to the generalized Fourier expansions, since
eigenfunctions, corresponding to different A, form orthogonal systems of functions with respect
to the weight r(x) as stated by the following theorem:

Theorem:

ille problem (5.11.1) are real-

Let y,,,(x) and
(Am # An).
Then y,,,(x) an r(x),i.e.

lues 4,, and 4,

(5.11.4)

Proof: See Kreyszig, p. 502.
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5.11. Application of the generalized Fourier series: The Sturm-Liouville problem. Solving the heat
conduction equation by the separation of variables

if p(a) = 0, then the following singular Sturm-Liouville problem can be solved:
Py + [qlx) + r(x)]y =0, a<x<bh

(5.11.5)
Ly(b) + kyy'(b) =0
If p(b) = 0, then the following singular Sturm-Liouville problem can be solved:
17 — < <
PGyl +q(x) + Ar(x)]y =0, a<x<b (5.11.6)

kiy(a) + kyy'(a) =0
if p(a) = p(b), then the following Sturm-Liouville problem with periodic boundary conditions

can be solved:
)Yl +[q(x) + Ar(x)ly=0, a<x<bh (5.11.7)

y(@ =yb), y'(a)=y'(b)
Note: Eigenfunctions of problems (5.11.5)-(5.11.7) also form orthogonal systems of functions
(see the proof in Kreyszig, p. 502).

Application of the Fourier expansions for solving PDEs with separating variables

Example: Let's consider the one-dimensional unsteady heat conduction problem:

oT  0°T (5.11.8)
pPC—- =K
Jt dx
=~ o s (5.11.9)
T(0,x) = Ty(x): Initial conditions
(5.11.10)
dT /dx = dT /dx = 0: Boundary conditions (thermally insulated boundaries)

x=0 x=L
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5.11. Application of the generalized Fourier series: The Sturm-Liouville problem. Solving the heat
conduction equation by the separation of variables

oT 0°T K (5.11.11)
— =a—, a=— 11.
ot 0x? pc
Let's try to represent the solution in the form
T(t,x) =0(t)X(x) (5.11.12)
and substitute it into Eq. (5.11.11). Then we obtain
O'X = abX"”
or
@I XII
— = —
® X
The LHS depends only on t, the RHS depends only on x. The identity is possible only if
@I XII
— = —C = const, a— = —C = const (5.11.13)
Q) X

Let's consider the second equation together with the boundary conditions given by Eq. (5.11.10)
X"+ 21X =0, X'(0) =0, X'(L)=0

where A = C/a. This is the Sturm-Liouville problem: If 2 = v? > 0, then X(x) = Acosvx +
B sinvx and it can satisfy the b.c. if B =0, vL = nm, n = 0,1,2, .... The eigenfunctions X,,(x),
corresponding to eigenvalues A,,, form an orthogonal system:

1 - NIy 2 y B nwx
n = (T) , n(x) = COST
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5.11. Application of the generalized Fourier series: The Sturm-Liouville problem. Solving the heat
conduction equation by the separation of variables

N 2
C,=al, =« (T)
Then a particular solution of the first Eq. in (5.11.13) for a given C,, takes the form:
0',/0, = —C, = 0, (t) = exp(—Cyt)

Now any 0, (t)X, (x) is the solution of Eq. (5.11.11) that satisfies the boundary conditions
(5.11.10). Due to linearity of the original equation (5.11.11) and boundary conditions, the
solution can be represented in the form:

T, = T, - __(nm\? nmwx
T(t,x) = 70 + Z T,0,(0)X,(x) = > T Z T,e a(7) ¢ CoS —— (5.11.14)
n=1 n=1

Coefficients T,, should be found based on the initial condition given by Eq. (5.11.9):

T - nmx
-+ ) Tpcos—— (5.11.15)

L
n=1

Since the RHS of Eq. (5.11.15) is the Fourier series of the function Ty (x), T, can be determined
as regular Fourier coefficients. Note that Ty (x) is non-periodic, but can be naturally extended to
an even periodic function with the period 2L. It explains the absence of sin-terms in (5.11.15).
Note: Depending on p(x), q(x), and r(x), the eigenfunctions of the Sturm-Liouville problem
can be not only trigonometric functions, but also many other functions. In particular, solutions
of the boundary value problems for PDEs with separating variables in domains with axial
symmetry result in eigenfunctions in the form of the Legendre polynomials.

T(0,x) = To(x) =
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5.12. Application of the Fourier series: Frequency spectrum analysis

Let's assume that we represented some P-periodic function in the form of the Fourier series:
0 a+P

. 1 |
flx) = Z crethex, Ck:FJ fx)e tkoxdy (5.12.1)

k=—o0

if the independent variable is time, x = t, then we call f(t) a signal in the time domain, and
w; = kw is the angular frequency.

Spectrum (spectral) analysis, also referred to as frequency domain analysis or spectral density
estimation, is the technical process of decomposing a complex signal into simpler parts. Any
process that quantifies the various amounts (e.g. amplitudes, energies, powers, intensities, or
phases), versus frequency can be called spectrum analysis.

The Fourier series gives us a signal as a combination of simpler parts. Every part has the form of
a harmonic oscillation. We can look at c¢; as at measure of importance of individual harmonic
oscillation of given frequency wy, in the signal.

Every complex amplitude c¢; can be represented in the form including amplitude C;, and phase

Pr:
’ 2 2
k>0 _ak_ibk_c i, . = ak+bk X - bk
2 2 (5.12.2)
a_y + ib_k i \/a_k T b_ b—k
k<0 Ck = 5 =Cke (Pk’ Ck= > , tan(pk:_
a_k
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5.12. Application of the Fourier series: Frequency spectrum analysis

Spectral analysis implies that we plot the amplitude spectrum, C;, versus wj, and phase
spectrum, @ versus wy,. Cp

Amplitude spectrum: C,
C_l . ________ , _______ _‘ Cl ‘ C3
C_z ________________________________________ CZ
® o
Ww_1 = —w w1 = w (1)3=3(,()
P2
Phase spectrum: Pk P3
e P 7T ¢
| W
w1 =W w3 = 3w
Q_
P2 '

Note 1: Amplitude spectrum is the even function, phase spectrum is the odd function.
Note 2: Spectrum Fourier analysis of periodic functions results in discrete spectrums.
Note 3: Amplitude Cj can be thought as a measure of representativeness of oscillations with

given frequency wy, in the signal.
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5.12. Application of the Fourier series: Frequency spectrum analysis

Example: Periodic rectangular wave of period 2L > 2. What happens if L — oo?

Signal f; (x) Amplitude spectrum a,, (w;,) (0 if -L<x< -1
) ..
- w, = nnafL fL{x] =] if —-1<x< 1
0 if 1<x< L
r/n=5 \
e \\}/,ﬂ" \’\j w The function is even, b,, = 0,
n=3 meT Co = laol/2, Cr = lagl, . =0
% \ n=2
\ n=10 .
- H N, : J’w—({l” We can analyze the amplitude
; %7 .7 ™ spectrum in terms of a,
1
1 fd 2
g 1 — o=y 7L
L a n=20 -1
' . A—‘ : L mn{iwu = Jl'”"'l;/"‘*r-ﬂ-l ' O Gt o 2 [t nwx 2 sin (n7r/L)
-8 0 8 ¥ R ol an=—J cos—dx=—fcus——dx=—————.
n=12 n =28 Ll E L L nw/L
fe————2L = 16— 0
) | if—1<x<1 Non-periodic function

obtained at L —» o

f) = lim fi,(x) = {

=10 1 x 0 otherwise.

Note 1: The difference between neighbor frequencies depends on the half-period L: Aw =
Wns1 — Wy, = /L, a, are proportional to Aw.

Note 2: In the limit of the non-periodic function, when P — o, Aw — 0 and the discrete
spectrum evolves into the continuous one.
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5.13. Fourier transform

With the Fourier series we can study properties of periodic functions, or periodic extensions of
non-periodic functions given at a finite interval. The motivation of the Fourier transform is to
extend the developed approach to non-periodic functions and, in particular, to non-periodic
functions f (x) that can attain non-zero values at arbitrary x.

We limit our consideration by absolutely integrable functions f(x), i.e. such functions for which
the following integral exists

Jlf(x)ldx < 4o (5.13.1)

It means that the area between the plot of |f(x)| and x-axis is finite. It is possible only if
|f (x)] = 0 when x — oo. But this last condition is insufficient. £ (0]

N

D /9D D /D
Examples: rfZ=rf

1. f(x) = exp(—alx]|) is absolutely integrable function.
2. f(x) = 1/|x| is not absolutely integrable function.

In order to find equations of the Fourier transform, let's consider some absolutely integrable
function f(x), choose some arbitrary P > 0, and then

1. Introduce a new function given in a finite interval h(x) = f(x) at —P/2 < x < P/2.
2. Introduce P-periodic extension g(x) of h(x).
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5.13. Fourier transform

The periodic extension can be expanded into the Fourier series. According to the Dirichlet
theorem, in the interval —P /2 < x < P /2, the Fourier series for g(x) coincides with f(x) with
exception of points of discontinuities, so we can write

o0 P/2
" 1 ik P P
f(x) = Z cpet™x, k=75 f(x)e "™WXdx, 5 = <x< ) (5.13.2)
k=—00 —P/2
where we use the complex representation of the Fourier series and notation w = 2 /P.

Now let's see how Eq. (5.13.2) evolves when P — oo,

The complex amplitude c; corresponds to the oscillation with angular frequency w; = kw =
2wk /P. These frequencies form a discrete spectrum. The difference between neighbor
frequencies Aw = wyy1 — Wi = 2w/P - 0 when P — oo. Thus, the limit of non-periodic
function f(x) (obtained at P — ) is characterized by a continuous spectrum when the angular
frequency can attain any real value. Then let's re-write Eq. (5.13.2) as follows

o P/2
Aw .
flx) = z Cr et @K¥ Cr = 75— f f(x)e 1 @rXdx
k=—o0 —P/2
Note that |cx|~ Aw — 0 when P — oo, The next step is to introduce f (wy) = V2mcy, /Aw:
P/2
fwg) =—= j fx)e tor*dy (5.13.3)

—P/2




5.13. Fourier transform

Then

1~ 5
£x) = \/T_nkzoof(wk)elwkwa (5.13.4)

Note that so far Egs. (5.13.3) and (5.13.4) are equivalent to Eq. (5.13.2), but they allow us to
consider the limit P — oo. In this limit, the RHS of Eq. (5.13.4) becomes the Riemann integral

sum, i.e. it transforms to the integral with the integrand f (wy)e'®¥*. Thus, in the limit P — oo
oo

f(w) = %_RL FOO)e % dz (5.13.5)
- L jOA( Yelwxd (5.13.6)
f(x)—m_oofa)e W 13.

If f (w) exists, then it is called the Fourier (integral) transform of f(x), representation of f(x) in
the form of Eq. (5.13.6) is called the inverse Fourier transform or Fourier integral of f(x).

Note 1: The Fourier transform is the complex-valued function.

Note 2: The Fourier transform can be formulated in many forms that usually differ from each
other by the choice of other variables instead of w and different coefficients before the integrals

instead of 1/+/2m. It can be also formulated in purely real form. The different forms of the
Fourier transform will be considered in section 5.14.
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5.13. Fourier transform

Example:

(1/x o0=sx<x 1/X
f(x)—{ 0 x<0,x>X

0 X

Let's calculate the Fourier transform:
X

1 .
e—wadx
\/Zan

0

"( )_LJOO ()—iwxd _LJX ()—iwxd _
fa)—m_oofxe x—mofxe X =

Let's use the Euler formula e 7'*** = cos wx — i sin wx:

X X
" 1
w) = Coswxdx—ifsinwxdx = A(w) — iB(w
fw) == | | () — B()
where
X
A(w) 1 J q 1 _ |x=X sin wX
w) = cos wx dx = sin wx =
V2mX V2 Xw x=0 2nXw
X
B(o) 1 j _ y 1 |x=X 1—coswX 2sin®(wX/2)
w) = sinwx dx = — COS WX = =
V2mX ; V2t Xw x=0 V2t Xw V2nXw

Note that A(w) is the even function and B (w) is the odd function.
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5.13. Fourier transform

The conditions when f(x) can be represented by the Fourier integral are given by the following:

Theorem: Fourier inverse theorem

Let's consider a function f(x), which satisfies the following conditions:

1. f(x) is absolutely integrable.

2. f(x) is a piecewise continuous in every finite interval.

3. f(x) has finite left-hand, f'(x — 0), and right-hand, f'(x + 0), derivatives in every point, i.e.

e h) — 0
f(xo_o)"h>0h_,0f(xo )hf(xo )f(0+0)"h>(;1}11_,0f(xo+ )hf(xo+ )
Then

1. The Fourier transform exists

f(w) =\/—% f floe dx

2. In every point x, where f(x) is continuous, f (x) can be represented by the Fourier integral,
00

1 : :
X) = — w)e'*dw
f(x) */2_”-_[0 f(w)
3. At a point x, where f(x) is discontinuous,

[f(x+0)+f(x 0] = ] Flw)e® dew
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5.13. Fourier transform

Note 1. Existence of left-hand, f'(x —0), and right-hand, f'(x + 0), derivatives implies
existence of left-hand, f (x — 0), and right-hand, f (x + 0), limits in every point. In other
words, only functions with jump discontinuities are allowed in the Fourier inverse theorem.

Note 2. The conditions of the Fourier inverse theorem are similar to the Dirichlet conditions, but
more restrictive. In the Fourier inverse theorem, it is required additionally
a. Existence of left- and right-hand side derivatives (only existence of left- and right-hand
limits is requited by the Dirichlet conditions).
b. The function f(x) should be absolutely integrable (Note that any non-zero periodic
functions is not absolutely integrable).
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5.14. Various forms of the Fourier transform

Fourier transform and Fourier integral

f(w)=\/%lo f)e @wxdx, f(x)z‘/%_”_[o f(w)e“*dw (5.14.1)

are used in many different forms. A few of such forms are considered below. We will mark these
different forms of the Fourier transform by the subscript "*" in order to distinguish them from
our basic form given by Eq. (5.14.1).

1. Form based on the "true" frequency § = w/(2m)
Then w = 2né,dw = 2ndé and

£ _L [ —i2méx _2_7T [ al i2méx
76) = m[e FGe 2rdy | f(x) = mi F()eizmexgs

Now let's introduce

£© =IO = [ f@emedn (5.14.22)
Then -
f(x)=\/2_7r ff‘(f)eianxdfz fﬁ(f)eiznfxdf (5.14.2b)
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5.14. Various forms of the Fourier transform

2. Non-symmetric form |

Let's introduce

f(w)
\V2m

fo =" = j F(x)e9% dx

Then

= [ £@erdo

3. Non-symmetric form Il

Let's introduce

. 2 10 |
filw) = \/;f(w) = J f(x)e '**dx

1 7.
F) = j 7 (@)ei®*dw

Then

(5.14.3a)

(5.14.3b)

(5.14.4a)

(5.14.4b)
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5.14. Various forms of the Fourier transform

4. Two-component form. Real form of the Fourier integral
Let's use the Euler formula e 7'*** = cos wx — i sin wx. Then Eq. (5.14.4a) reduces to

A 1
f(w) = - f f(x)(coswx — isinwx)dx = A(w) — iB(w), (5.14.5a)

where

Alw) = j f(x) cos wx dx, B(w) = j f(x) sin wx dx (5.14.5b)

Note that A(—w) = A(a)) B( w) = —B(w), i.e. A(w) and B(w) are always even and odd
functions, correspondingly. Now let's use the Euler formula in Eq. (5.14.4b):

flx) = % j [A(w) — iB(w)](cos wx + isin wx)dw =

(0]

1
> f [A(w) cos wx — W +Wx + B(w) sin wx]dw

Since both B(w) cos wx and A(w) sin wx are odd functions, finally we have

co

f(x) = % f [A(w) cos wx + B(w) sin wx]dw (5.14.5c¢)

— 00
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5.14. Various forms of the Fourier transform

But now we see that the integrand, A(w) cos wx + B(w) sin wx, is the even function, so we can
rewrite the last equation as

oo

flx) = J [A(w) cos wx + B(w) sin wx]dw (5.14.5d)

0
Note: Egs. (5.14.5b)-(5.14.5d) allows us to formulate the Fourier integral in the purely real form

(without complex numbers).
5. Fourier transform for even and odd functions

If f(x) is even, then B(w) = 0 and f(x) cos wx is the even function, so we can write
(0 0)

(0.0)

A(w) = %j f(xX)coswxdx,  f(x)= J A(w) cos wx dw (5.14.6)

0 0
The Fourier integral in the form of Eq. (5.14.6) is called the Fourier cosine integral.

If f(x) is odd, then A(w) = 0 and f(x) sin wx is the even function, so we can write

B(w) = %f f(x)sinwx dx, f(x) = j B(w) sin wx dw (5.14.7)
0 0

The Fourier integral in the form of Eq. (5.14.7) is called the Fourier sine integral.
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5.14. Various forms of the Fourier transform

6. Fourier transform for half-range functions givenat x > 0
The case of functions given only in the half-range, e.g., only at x > 0, is an important case, since
signals (functions of time, x = t) are recorded and studied starting at some initial time.

If values of f(x) are given only at x > 0, then, in order to Even extension:
introduce its Fourier transform and integral, we have at B(w) =0
least three options: A\
_ ~Arbitrary F(x):

1. To assume that f(x) = 0 at x < 0. It gives us the Fourier extension: half_'jange
integral in the general form of Egs. (5.14.5b) and (5.14.5d). A(w),B(w) # 0 function

. \ 1/ 27T~ given at
2. To extend f(x) for x < 0 evenly, i.e. to assume that ‘.~ RN x>0

\

f(x) =f(—x)at x <O0. It gives us the representation of
f (x) in the form of the Fourier cosine integral, Eq. (5.14.6). f X

"Zero" extension:
3. To extend f(x) for x < 0 oddly, i.e. to assume that 4@ B(w)#0
f(x) =—f(—x) at x < 0. It gives us the representation of ™ 0dd extension:
f (x) in the form of the Fourier sine integral, Eq. (5.14.7). A(w) =0

Note: Different extensions of f (x) at x < 0 produce different Fourier transforms, but the Fourier
integral in all these cases will have the same values at all x > 0 except points where f(x) is
discontinuous. It is guaranteed by the Fourier inverse theorem. In particular, the value of the
Fourier integral at x = 0 can be different depending on whether the extended function has or
does not have a discontinuity in this point.
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5.15. Applications of the Fourier transform

Like the Fourier series, the Fourier transform is used in order to
1. Solve initial- and boundary value problems for ODEs and PDEs.
2. Perform spectrum (spectral) analysis.

3. Perform signal processing (Filtering, etc.).

Fourier transforms of many "basic" functions are tabulated like derivatives and antiderivatives
(see Kreyszig, pages 534-536).

If the independent variable is the time, x = t, then f(t) is often called the signal in the time
domain. The Fourier transform f(a)) is considered as the image of the signal in the frequency
domain.

Spectrum analysis
The purpose of spectrum analysis is to decompose a given signal into simple, harmonic
components, and to define, e.g., the dominant frequencies, i.e. frequencies of harmonic
oscillations that provide major contributions to the signal.

The Fourier transform can be represented in the form (compare Eqs. (5.14.4a) and (5.14.5a))

f(a)) = \/g [A(a)) — lB(a))] = S(w)ei¢(w)

where S(w) and @ (w) are the amplitude and phase

B(w)

S(w) = \/g [A2(w) + B%(w)], tan ¢ (w) = )
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5.15. Applications of the Fourier transform

Thus, the general complex Fourier transform corresponds to two real spectra: Amplitude
spectrum S(w) and phase spectrum ¢ (w)

If f(x) is the even function, then f(w) = /m/2A(w) is a real-valued function and only the
amplitude spectrum is of interest.

The amplitude S(w) can be thought as a measure of representativeness of oscillations with
given frequency w in the signal.

Example: See http://en.wikipedia.org/wiki/Fourier_transform
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5.15. Applications of the Fourier transform

Signal processing

The purpose of signal processing is to modify the input signal by changing the amplitudes, S(w),
or phases, ¢(w), of individual oscillation, i.e. by editing the signal in the frequency domain

Find the image » Edit the image in the » Restore the corrected signal in
(Fourier transform) frequency domain the time domain (Fourier integral)

Practical goals:
1. Amplification of low-level signals in a given region of the spectrum
2. Noise reduction/cancelling (audio/video devices, analog radio, etc.)

Example: Noise reduction
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5.16. Discrete Fourier transform (DFT). Fast Fourier transform (FFT)

In the majority of applications, the signal function g(y) is given in the discrete (tabulated) form

---_ + 1 point
: N points e
g)  go g1 9z - InN-2 for periodicity In = Yo

This is typical for signals obtained as results of measurements in physical experiments. We
cannot perform signal processing or spectrum analysis of such signal by directly applying the
Fourier transform, because calculation of the image

oo

4.5 = j g()e2mEx iy

is possible only if we know f(x) for all x. The Discrete Fourier transform (DFT) is a special

modification of the Fourier transform that can be applied to discrete (tabulated) signals.
Reduction of a discrete signal to a standard form

Let's consider signals with evenly spaced points: y,, = y,,_1 + Ay, Ay = (yny_1 — Yo)/(N — 1).

Let's turn the signal into the periodic function, assuming that there is an additional point yy =

Yn-1 + Ay, where gy = g(yy) = go. Such extended signal g(y) can be reduced to a

"standard" periodic discrete signal f (x) given in the interval 0 < x < 2m:

Y — Yo YN — Yo

= @ = g(n+T5 ")

> For the standard discrete signal, x,, = 2nn/N and f,, = f(x,) = g(y,,) = gn.

> Standard discrete signal is given by the (column) vector f = [f,, f1, ..., fv-1]".

X =21
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5.16. Discrete Fourier transform (DFT). Fast Fourier transform (FFT)

Interpolation by trigonometric polynomials
Since f(x) is given in a finite range 0 < x < 2m, we could represent it in the form of complex
Fourier series, Eq. (5.6.4), with w = 2 /P = 1:

(00]

f(x)= z Ckeikwx: z Ckeikx

k=—o0 k=—c0

We cannot define infinitely large number of complex amplitudes c if we know values of f(x) in

only N points. Instead, let's approximate f(x) with N-term complex trigonometric sum:
N_

1 N-1
. . k‘
Q(x) = 2 cretx = Z ck(e‘x) \ (5.16.1)
=0 Here we use

k=0 axy = (ax)y

The function in the RHS of Eq. (5.16.1) is called the complex trigonometric polynomial, since it

is an analog of "regular" polynomials in the form
N-1

PG = ) a0

k=0

Our goal is to find ¢y, in Eq. (5.16.1) based on data in the vector f = [f,, f1, ..., fy—1]" . We will do
it, assuming that Q(x) is the interpolation polynomial, i.e.

Qxn) = f(xn) = fn (5.16.2)
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5.16. Discrete Fourier transform (DFT). Fast Fourier transform (FFT)
Combining Egs. (5.16.2) and (5.16.3), one can write that
N—-1

N-1 K
Kk 2m 21 T
z Ck(elxn) = fn - Z Ck(el n = fn - Z Ck(elN = fn
k=0 k=0

L2TT
If we introduce w = e" N, then the last equation can be re-written as follows:

N-1
z ckW ™ = fo, n=0,.,N-1 (5.16.3)
k=0
Eqg. (5.16.3) is a linear system with respect to ¢, and can be re-written in the matrix form as
[ Co ] C fo
c
Wc = f, where c=| f = ]il
CN-1. -1
and square matrix W has elements W,, ;, = W™, The solution this system is
c =WIf
The elements wy, ; of the inverse matrix W‘1 are equal to (See Kreyszig, Sect. 11.9, p. 529)
1 _2Tm
Win = kan, where w=¢e 'N
(w and w are complex conjugate) and thus
N-1
( —l— 1 —ikx
Ck = Winfn = fn e = €k = N fne n (5.16.4)
n=0 n=0
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5.16. Discrete Fourier transform (DFT). Fast Fourier transform (FFT)

Eg. (5.16.1) and (5.16.4) defines the trigonometric interpolation polynomial which is used
instead of trigonometric (Fourier) series for tabulated functions.

Discrete Fourier Transform (DFT)

We connected the Fourier transform f(wy) with cj, as (See slide 46): f(wy) = V2mc,/Aw. In
the case of a tabulated function Aw = w/N = 1/N and it is reasonable to introduce the

discrete Fourier transform (DFT) of f as a (column) vector f = [fy, fi, ..., fv—1]7, where
N-1
f, =Nc, = Z f e txn (5.16.5)
n=0

The DFT can be also introduced in the matrix form

2m\ Nk

_l_

where the Fourier matrix Fy = NW™1 = [¢,, ] has elements e, , = w*" = (e N

If we know the image of the signal, f, and want to find the signal itself, we just need to resolve
the linear system given by Eq. (5.16.6) with respect to f:

f = Fy'f : Inverse DFT (5.16.7)
where Fy' = (1/N) W = [&,,/N] or (compare with Eq. (5.16.4)):
, N-1
fo= Z femikxn (5.16.8)
k=0
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5.16. Discrete Fourier transform (DFT). Fast Fourier transform (FFT)

> Fourier transform of discrete (tabulated) data f is a vector (table) f, not function.

» In applications, the number of points in the signal is usually large, N >> 1. In this case the
direct application of Eq. (5.16.6) is inefficient, since it requires ~(N — 1) X N~N? arithmetic
operations. Direct calculations of DFT at large N is extremely lengthy operation!

Fast Fourier Transform (FFT)
» Fast Fourier Transform (FFT) is a DFT at specific values of N, where calculations are organized
in a special manner that allows one to reduce the number of arithmetic operations.

» Usually in FFT, N = 2™. In this case the number of arithmetic operations can be reduced to
NlogN,e.g.,N = 1000, N2 = 1000000, Nlog N = 6900,more than 100-fold acceleration!

» The most popular algorithm of FFT is the Cooley-Tukey algorithm. This method (and the
general idea of an FFT) was popularized by a publication of J. W. Cooley and J. W. Tukey in
1965, but it was later discovered that those two authors had independently re-invented an
algorithm known to Carl Friedrich Gauss around 1805. He developed an FFT-type algorithm
to interpolate the orbits of asteroids Pallas and Juno from sample observations.

» See details in
Kreyszig, Sect. 11.9, pp. 528-532

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey FFT algorithm

» The majority of mathematical software has build-in capabilities for FFT. In MATLAB, FFT of
tabulated data X can be performed with function fft ( X ). See

https://www.mathworks.com/help/matlab/ref/fft.html?requestedDomain=www.mathworks.com
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