Chapter 6
Vector Calculus

Reading:

Kreyszig, Advanced Engineering Mathematics, 10th Ed., 2011
Selection from chapters 9 and 10

Prerequisites:

Kreyszig, Advanced Engineering Mathematics, 10th Ed., 2011

» Vector quantities. Dot and cross products: Sections 9.1-9.3
» Double integral: Section 10.3

» Triple integral: Section 10.7
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6.1. Vector physical quantities

» Notion of a vector is inspired by the existence of physical quantities that are characterized by
both magnitude and direction, e.g., velocity and force. In physics
v The scalar a is a quantity that is determined by its magnitude (temperature).
v The vector a is a quantity that is represented by a directed line segment, and thus, has

magnitude |a| (absolute value, length, or norm of the vector) and direction (velocity,
Force, angular momentum).

» Two vectors a and b are equal to each other, a = b, if they have the same length and
direction even if their initial and terminal points are different. We say that any vector is a free
vector if translation (displacement without rotation) does not change the vector.

» Two basic operations on vector physical quantities are the vector addition c=a+ b and

scalar multiplication ¢ = ba. Since physical vectors are defined geometrically, we introduce
such operations also geometrically as

e . C
/ b N d
o /
g /
c=a+b c =ba : |c| = |b||a]
Vector addition Scalar multiplication
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6.1. Vector physical quantities
And assume that they posses the following properties

at+b=b+a, (a+b)+c=a+(b+0), a+0=0+a=a, a+(—-a)=0

1.1
c(a+b) = ca+ cb, (a + b)c = ac + b, a(be) = (ab)c, 1a (6.1.1)

|
m

Here:

» 0 is the zero vector, |0| = 0.

» —a has the same length as a, but opposite direction.

» Existence of —a allows one to determine the vector subtraction: c =b —a = b + (—a).
» The unit vector is a vector of unit length, |a| = 1.

A whole set of objects (vectors) on which we can perform vector addition and scalar
multiplication with properties given by Egs. (6.1.1) is called the (linear) vector space.

» The idea behind the vector calculus is to utilize vectors and their functions for analytical
calculations, i.e. calculations without geometrical considerations.

» It is possible if any vector is completely represented it terms of numbers, not directed line
segments.
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6.2. Vector calculus: Motivation and applications

Motivation: Calculation of work-type quantities

Work = force x distance

distance

l-: -
mass

% 0

LY WYy

& 2011 Encyclopadia Britannica, Inc.

For general description of the
work-type quantities we need:

» Mathematical description
of curves

» Line integrals

What if the path is complex and/or force is not aligned with
the velocity?

Line integrals are the ultimate

/| generalization of equations
Trajectory of |

a chaotic \
pendulum QRS s

e
ey

Work = force x distance

for work-type quantities
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6.2. Vector calculus: Motivation and applications

Motivation: Calculation of flux-type quantities

Flux of a physical quantity is the amount of
this quantity transferred through a given area
(surface) per unit time

Surface integral is the ultimate
generalization of equation
Q = AV

for flux-type quantities

For general description of the flux-type
guantities we need:

» Mathematical description of surfaces
» Surface integrals

» Relationships between flux- and work-
type quantities (integral theorems)
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6.2. Vector calculus: Motivation and applications

Applications of the vector calculus: All science and engineering fields where problems are
formulated in terms of PDEs or require analysis of vector fields in multidimensional spaces.

» Formulation of physical laws in terms of scalar, vector, and tensor fields.

» General mathematical properties of such mathematical models .

Fluid mechanics and gas dynamics, combustion
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6.2. Vector calculus: Motivation and applications

Solid mechanics Electromagnetic theory

electromagnetic field lines
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Statistical physics, Quantum mechanics, Rarefied gas dynamics, .............
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6.3. Linear vector space. Dot, cross, and triple products

The idea behind using the vector quantities in calculus is that any vector can be represented by a
few numbers that are called components of the vector. It allows us to perform all operation on
vectors algebraically, i.e. without any geometrical considerations. Let's consider how we can
introduce components of vectors.

First, let's introduce the geometrical projection of a
vector onto an axis and postulate the existence of
global 3D Cartesian coordinates

Let's consider a vector a and some axis (line with
given direction). The direction of the axis can be
characterized by a unit vector e, placed along the
line and having the same direction. Then we can
geometrically define the vector projection a, and
scalar projection a,

(6.3.1)  ap =lalcosH, ap =apep
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6.3. Linear vector space. Dot, cross, and triple products

Based on observations and our experience we can postulate that the physical space in the
classical mechanics is Euclidean, i.e. we can introduce the Cartesian coordinate system, which is
composed of three mutually perpendicular axis Ox, Oy, and Oz. Next we can fix an arbitrary
linear scale and introduce three unit vectors 1, j, K, directed along every axis, which we call the
(Cartesian) basis.

z

Then every vector can be uniquely represented in the form of a

sum of its projections onto vectors of the Cartesian basis Jx K
1
a=ayi+ayj+a,K=a;i+ aj+azk i
N
where a,, a,, and a, are called Cartesian components of vector / RS
x y
a. If the Cartesian coordinates are fixed, every vector (element of z
the vector space) is just a unique ordered triple of real numbers
(6.3.2) a=a,i+a,j+a,k=(a,a,a, o
a | 0
Components (a,, a,, a,) of vector a are determined by the basis ¥ 4
i, j, K and if Cartesian coordinates change, the components or -
every vector change as well. a, /‘%\?ll\: s
. - 2
H"'-.. -.‘] I
L P T
}i
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6.3. Linear vector space. Dot, cross, and triple products

Based on the Pythagorean theorem we see that the
norm or length of the vector is now defined as

|a| =\/a§+a§+a§

A vector a is called the unit vector if |a| = 1.

The cosine of angle 8 between vectors a and b (0 <
6 < m) is equal to the scalar projection e ; of the unit
vector e, along a onto the unit vector e, along b.

The dot (inner, scalar) product a - b of two vectors a
and b is the number (scalar) defined as

(6.3.3) a-b = |a||b|cosb.

Obviously,i-i=1,i-j =0, etc., so that

(6.3.4) a-b=ayb,+ay,b, +a,b,
and
la| =+va-a= \/§

Two vectors a and b are called orthogonal ifa-b = 0.

Properties of the dot product:

1. a-a=>0,
ifa-a=0thena=20
1. a-b=b-a

2 (a+b):c=a-c+b-c
3. (ca)-b=c(a-b)
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6.3. Linear vector space. Dot, cross, and triple products

The cross (vector) product of vectors a and b
is the vector a X b that

1. Is equal to zero vector O if |a| = 0 or |b| =
0.

2. Is orthogonal to a and b.
3. Has the length

la X b| = |a]|b]|sin@ | |a X b| = |a||b|| sin 8 |= area of parallelogram
where 8 is the angle between a and b. Right-handed Left-handed
4. Has such direction thata, b, andv=a x b Cartesian coordinates Cartesian coordinates
is the right-handed triplet, i.e. rotation . _
from a to b from the top of v occurs in the } / j
counter-clockwise direction. ; [ ;.
Then /\ :
ixj=Kk, jx k=i, Kxi=j . S
aXxXb=(ayi+ a,j+ aK) X(byi+ byj+ b,K)=a,b,i X i+a,b, iX j+...=w+axby k+...
i j Kk
axXb=a ay a (6.3.10)
by by by
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6.3. Linear vector space. Dot, cross, and triple products

Note: All properties of the vector product can be derived from the definition. It is important that
axb=-bxa, ax(bxc)#(@xb)xc

The triple product (a, b, ¢) of vectors a, b, and
c is the scalar calculated as

ay a, a,
(a,b,c)=a-(bxc)=|bx b, b,
(6.3.11)

» The physical meaning of the triple product:
The triple product is equal to the signed
volume of a parallelepiped with edges
along vectors a, b, and c:

|a:- (b Xxc)| =|a]|lcos B||b X c| = h|b X c

» All other properties of the triple product
can be easily derived from properties of dot
and cross products.

Example: Let's consider a plane given by two non-parallel vectors b and c lying in this plane and
a point with the position vector ry. Then the equation of this planeis (r —ry) - (b X ¢) = 0.
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6.4. Scalar and vector fields and their derivatives

Let’s consider 3D physical space. Based on experimental observations, in the classical mechanics
we make the following assumption about properties of the physical space:

The physical space is a Euclidean three-dimensional (3D) space that means we can introduce
(global, unique for the whole space) 3D Cartesian coordinates Oxyz such that the distance
between any two points P; (x1, V1, Z1) and P,(x,, y,, Z5) is given by

y
lip = J(xz =% )2+, =y )+ (2, — 2z )? _ p
For every point P we can introduce the position vector r = r(P) ] ’r‘ r
starting from the origin of the coordinates O and ending at point P. 0

e
We can introduce three mutually orthogonal unit basic vectors i, j, k \ X
and K connecting the origin O with points (1,0,0), (0,1,0) and /
(0,0,1) at the axes. z
The the position vector can be represented in the form

r =xi+yj+zk
where (x,y, z) are coordinates and the scalar (dot) product is
T, =Xy X +Y1 Y2 t23 24

Relative position of point P, with respect to point P; is characterized by the relative position

vector Arlz == 1‘2 - 1'1 W|th the Iength l12 == \/Arlz y Arlz.
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6.4. Scalar and vector fields and their derivatives

Let’s consider some domain D, which can be

1. One-dimensional (1D): set of points at the real x-axis

2. Two-dimensional (2D): Set of points in xy-plane

3. Three-dimensional (3D): Set of points in xyz-space.

» We assume that we introduce a Cartesian coordinates Oxyz with the global basis i, j, k
» |In every case we can characterize a point P of D with the position (radius) vector r

» In 3D, we will consider only right-hand coordinates

1D 2D
D y
r
— / X 1
0 0 X X
r = xi r = xi+ yj 72/ r=xi+vyj+zk
Assume that for every point P from D we define a number
f=fP)=f(r) (6.4.1)

The function f(r) is called the scalar field.
1D: f = f(P) = f(r) = f(x) is a function
2D: f = f(P) = f(r) = f(x,y) is a 2D (planar) scalar field
3D: f =f(P)=f(r) = f(x,y,2) is a 3D scalar field
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6.4. Scalar and vector fields and their derivatives

The surface f(x,y,z) = const is called the isosurface of the scalar field f.

In 2D case, curve defined by the equation f(x,y) = const is called the isoline or contour line.

The isosurfaces and isolines are used to visualize scalar fields.

Example: Spherically symmetric gravitational field

The potential energy of a point mass m in the spherically symmetric field of mass M with center
in point (xg, Yo, Zo) is equal to
GMm GMm

\/(x_x0)2+(y—yo)2+(z—zo)2= r

U(x,y,z) - - = U(T')

Isosurfaces are spheres with center at (xg, Vo, Zg)-
Contour lines at xy-plane are circles with centers at (xg, yo).

y

- U(r) = const
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6.4. Scalar and vector fields and their derivatives

Now let’s assume that in every point P of D we define a vector F(P) = F(r). Then F(r) is called
the vector field:

F(r) = E(m)i+ E,(r)j + F,(r)k (6.4.2)
1D: F = F(P) = F(r) = F(x) = E,(x)i
2D: F =F(P) = F(r) = F(x,y) = E.(x, )i + E,(x, y)j
3D:F =F(P) =F(r) =F(x,y,2z) = F,(x,y,2)i+ E,(x,y,2)j + F;(x,y,2)k

The curve at every point of which the vector field F is tangent to the curve is called the field line
of the vector field F. Field lines are used for visualization of vector fields.

Example 1: Potential flow field around a cylinder in a cross-flow.
r, 8 are polar coordinates (x =r cos 8, y = r sin 0)
Scalar field: Velocity potential

RZ
o(r,0)=U <r + 7) cos O

Vector field: Fluid velocity

V=U[1+—(Sln 6 — cos? 0)|i— —cosHsmH]

White curves: Contour lines of the velocity potentials ¢ = const
Black curves: Field lines of the velocity fields.
In fluid mechanics, field lines of the velocity field are called the streamllnes

ME 501, Mechanical Engineering Analysis, Alexey Volkov 17



6.4. Scalar and vector fields and their derivatives

Example 2: Scalar temperature field Example 3: Vector velocity field in the flow over
a circular cylinder
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6.4. Scalar and vector fields and their derivatives

Example 4: Electric field lines of a dipole Example 5: Magnetic field lines over the Sun
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6.4. Scalar and vector fields and their derivatives

We can define derivatives of scalar and vector fields, e.g., with respect to x

a A » Vo - » Yo

_f — lim f(x + Ax,y z) f(x y z) (6.4.3)
dx  Ax-0 Ax

oF  Flx+Axyz)—F(xy2z)

x  Arso Ax B

. E(x+ Ax,y,z)i+ E,(x + Ax,y,2)j + F;(x + Ax, y,2)K — [F(x,y,2)i + F,(x,y,2)j + F;(x,y, z)K]
im =

Ax—0 Ax
0F, 6Fy JF,
: : k (6.4.4)
0x I+ ox )+ 0x

The basic property of any such derivative is the linearity (a and b are constants):

I (aF + bG) = 6F+b6G
dx ¢ _“ax dx

Many rules valid for ordinary derivatives also hold for derivatives of the dot and cross products,
in particular

i . — E a_G These properties remain valid because F - G

(F-G) G+ F

0x 0x 0x F X G are represented in the form of sums,
5 OF G where every term is a product of two

G_(F X G) = P X G+ F X Ep functions, e.g. F - G = E.Gy + F, Gy, + F,G,.
X X X
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6.5. Curves

Let’s consider a 3D space with Cartesian coordinates Oxyz and a vector r in this space, which
every coordinate is a function of some parameter t:
r(t) = x(O)i + y(0)j + z(O)k, a<t<b (6.5.1)

r(t) is called the vector function of parameter t. Functions x(t), y(t), and z(t) are called the
coordinate functions of the vector function r(t) .

If r(t) is the position vector, then Eq. (6.5.1) determines a set of point C in 3D space that form a
curve. In this case Eq. (6.5.1) is called the parametric representation of a curve.

Note: In 2D space, e.g., on the plane Oxy, we can use the

parametric representation of a plane (2D) curve in the form
r(t) = x(t)i+ y(t)j a<t<bh

Plane curve is a particular case of twisted (3D) curves. t = c/ t=>,

Curve C given by Eqg. (6.5.1) is called oriented since an

increase of the parameter t defines the direction of motion

along C, r(a) is the initial point, r(b) is the terminal point. 7

y

Example 1: Parametric representation of a straight line in 3D
r(t) =ry+ (ai + bj + ck)t = ry + dt

Example 2: Parametric representation of a circle in 2D
r(t) =ro,+ R(costi+sintj)

Example 3: Parametric representation of a helix curve
r(t) =r(costi+sintj) + (P/2nm)tk
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6.5. Curves

Simple curve is a curve without multiple points, that is, without
points at which the curve intersects or touch itself.

A curve is called smooth in point P (or at value t of its
parameter), if its coordinate functions have derivatives of any
order in P. A curve is called smooth if it is smooth in every point
of (a, b).

A curve is called piecewise smooth if it consists of finitely many
smooth curves, i.e. can be represented as a set of a finite
number of smooth curves and a <t < b can be divided into a
set of disjoint subintervals and for every subinterval C; is smooth.

If curve C is smooth in point t, we can define the vector function

t + At) — r(t
ré(t) Ali—>0 r( AZ’ r( )
(6.5.2)

If |[r'| # 0, then vector r’ takes the limiting position with respect
to the chord vector r(t + At) — r(t) along the tangent to the
curve in point P and is called the tangent vector to the curve C
in the point P.

=x'()i+y'(t)j+ 2z (kK

Example: If t is time, r(t) is the trajectory of a point mass, then

r/(t) = v(t) is the velocity of the point mass.

Curves with multiple points

%U%

Piecewise smooth curve

r(t+At)

The parametric representation

of the tangent to the curve is
r(w) =r(t) + r/(t)w

ME 501, Mechanical Engineering Analysis, Alexey Volkov
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6.5. Curves

Let’s consider the arc (part of the curve) that corresponds to the
interval of the parameter (a,t), t < b and divide the arc by
points

l'l'=l'(ti), t1=a< t1<t1<"‘<tN=t
into a large set of curves AC;. For every pair of neighbor points,
we can introduce the line segment with the chord vector Ar; =
r;.1 — I, which approximates curve A(;.
Let A7,q = max(|Ar;| ). The smaller Arn,,,, the better
approximation of the arc by the broken line of chords with
endpoints ;. Then it is reasonable to call the following limit

N-1
) Al‘i ,
s(t) = prlim Oz |Ar;| = AtﬂgeoZ |—Ati |At; = flrtldt (6.5.3)
= a

the arc length. [ = S(b) is the curve length.

S

Definition (6.5.3) shows us that ds/dt = |r{| and | = s(b)

ds ds
ds = —dt = |r{|dt, — = r}| = J ()24 )2 + (/)2
o o s(6)
i.e. differential dt of the parameter t corresponds to the

increment of the arc length ds = |r'|dt called the linear
element of C. b t
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6.5. Curves

Since s(t) is an increasing function, then s can be used as another parameter. For this purpose,
we can resolve equation s = s(t) with respect to t = t(s). Then :

r(s) = x(t(s)i+ y(t(s))j+ z(t(s))k = ¥(s)i + y(s)j + Z(s)k, 0<s<lI

where %(s) =x(t(s)) , etc. For every curve there is a specific parameterization where
parameter s is the arc length. For this parameterization

ri(s) =xi+yj+Zk=x'ti+y'tj+ z't'k

where .,,_df_d'th_ 14!
o dt_(ds\™"_ 1 Y Ts T dtds <F
ds \dt) |r]]
Thus,
. NG+ )+ (2)?
Irs| = , =1
|I‘t|

i.e. if the parameter is the arc length, the tangent vector is the unit tangent vector u = rs.

1

+

Theorem: If a vec ngent vector ry is

orthogonaltor, i.e.

q‘

Proof: Assume \/x2 + y2 + z2 = 1. Then differentiation of the this equation results in:
2xx" + 2yy' + 227

2\/x2 + y2 + z?

=r-r =0
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6.5. Curves

Here all derivatives are calculated
fort =s,ie.u’ =u; b’ =Db,

Consequence: 2
If the parameter is the arc length then g
I'SI. . r.S", =u-u =0 Rectifying plane b Normal plane

If lu’| # 0, then u’ is called the principal normal
vector, p =u’'/| u’| is called the unit principal
normal vector, and b = u X p is called the unit
binormal vector.

Vectors u, p, and b form the local trihedron of
mutually orthogonal vectors in a point of a curve. W
Planes (u,p), (p,b), and (u,b) are called

osculating, normal, and rectifying planes.
Two major numerical properties of a twisted curve are the curvature x(s) and torsion 7(s) :

Kk(s) = |u'| 7(s) = —p-b’ = t|b’| (6.5.4)

Note: b’ is parallel to p, since b’ = (uxp) =u'Xp+uxp’' =uxp’,ie. b’ is orthogonal
to both u and b.

Principa
P _N0rmg

\

‘ Osculating plane

Meaning of curvature: It shows how fast the curve deviates from its tangent direction in the
point P (for a straight line u = const and k(s) = 0; 1/x(s) the radius of a circle).

Meaning of torsion: It shows how fast the curve deviates from a plane curve in the osculating
plane (for a plane curve b = const and 7(s) = 0).

Note: With exception of the following example, we will not use the curvature and torsion.
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6.5. Curves

Example: Properties of a helix curve.

Parametric representation of the helix curve around axis z of radius R and pitch P:

Pt
r(t) =Rcosti+Rsintj+§k

P
r/(t) = —Rsinti+ R costj +%k

ds P\?

E=|rt’|= R? + <2ﬂ> =a=const = s=at
S S Ps
r(s) = Rcos—i+ Rsm—] +—Kk
a 2T
R S +R S L P P P
u=r = —— —i+— —
5(5}3 . sm% - Cos— j T _
! S S, P S P S R
u = —— cos—i——sin _ _ .
a? a o ) b=uxp-= %smal—%cosaj+ak
p=u =—cos£i—sin£j =P > P inss
| 0 o b’ = T a? COSEl-l- ra? sin—j
Curvature and torsion of the helix curve:
, R R 1 1 P/2n
K(S)zlulzazsz p 2=§1 p 2 T(S)= o2
(Zn) + (ZnR)
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6.6. Surfaces

The surface in 3D space is a set of points that can be given by an equation

G(x,y,z) =0 (6.6.1)
Example: (x — x0)?+(y — ¥9)*+(z — z5)*= R? is the sphere of radius R with the center in the
point (xo, Vo, Zo)-

Locally, we can resolve Eq. (6.6.1) with respect to one of coordinates x, y, z and obtain, e.g.

x =9, 2) (6.6.2)
For instance, at any point of the sphere, where x > x,, we can write

x =% +vR? = (¥ = ¥0)2+(z — 20)?
Equation in the form (6.6.2) may be not valid, however, for the whole surface, since given y and

Z may correspond to a few different x at the surface (e.g., for a sphere glven y and z correspond
to two points on the sphere surface).
P(y,z)

On the other hand, Eq. (6.6.2) shows that locally 9, z)
the surface can be represented parametrically as

(6.6.3)  r(y,2z) =g, 2)i+yj+zk ™S

where r(y, z) denotes a radius vector of a point at r(y,z)
the surface. Eq. (6.6.3) shows that a surface is a
two-dimensional set of points, since we need two — ,
parameters (y and z) to describe it parametrically. N (y,2)
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6.6. Surfaces

In general, parameters do not need to coincide with Cartesian coordinates, so one can mtroduce
the general parametric representation of a surface in the form |

(6.6.4) r(u,v) = x(u,v)i+y,v)j+ zu,v)k

where u and v vary in some region R on uv-plane.
Eqg. (6.6.4) describes the parametric mapping of the plane region R in
3D surface.

Surface S
in space

Mapping
In order to define any surface parametrically, we need to

1. Introduce three functions: x(u, v), y(u, v), and z(u, v).
2. Define region R on uv-plane where u and v varies.

Example: Parametric representation of a cylinder and a sphere

z

5 i b Oo<u<2m

S~ U 0= 0) =4 =
w@< a<v<hb
/ :

(uv-plane)

O0<uc<?2nm
O0<v<m

Y

r =R (cosui+sinu j)+ vk r =R (sinvcosui+sinvsinu j+ cos v k)
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6.6. Surfaces

If we fix either u or v, Eq. (6.6.4) gives the parametric representation of a curve. Thus, the
parametric representation (6.6.4) defines two families of curves on the surface:

u-curves (v = b = const) :

r,(u) =x(u,b)i+ y(u,b)j+ z(u, b))k
v-curves (U = a = const) :

r,(v) = x(a,v)i+ y(a,v)j+ z(a,v)k
u- and v-curves are called the grid lines.

If both r(u) and r(v) have derivatives over u and v in
point P, then we can introduce in this point two vectors
dr, Jr(u,v) dr, or(u,v)
du  ou ' dv _ ov

These vectors are tangents in point P to the corresponding
grid lines.

(6.6.5) t,= t, =

If t, X t, # 0, then we can plot a unique plane, containing
the point P and vectors t,, and t,,. This plane is called the
tangent plane to the surface in point P.

If tangent plane exists in point P, then vector N =1t, X t,,
is called the normal to the surface at point P (N is normal
to both t, and t,). Vectorn = N/|N| =t, X t,/|t, X t,]
is called the unit normal.

r(a,v) r(u,b)

r(u,v)

VA
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6.6. Surfaces

Surface is called smooth in a point P if in this point the surface has a unique tangent plane (i.e.
t, and t, existand |t X t,| # 0).

Surface is called smooth if it is smooth in every its point.

Surface is called piecewise smooth if it can be represented as a set of adjoin smooth surfaces.

Physical meaning of the tangent plane: If we perform calculation of surface properties in an
infinitesimal vicinity of point P, we can perform all calculation on the tangent plane. Let’s use
this rule in order to calculate the area of the surface that corresponds to increments du and dv.

Let’s assume that we consider point P at the surface when parameters are equal to u and v and
we give them infinitesimal increments du and dv. These increments correspond to the surface
element of infinitesimal area dA. Question: How is dA related to du and dv?

On the tangent plane, du and dv correspond to the parallelogram of area

(6.6.6) dA = |(t,du) X (t,dv)| = |ty X t,|dudv = |N|dudv

For the future consideration, we will also need areas of projections of this parallelogram onto
coordinate planes (x,y), (x,z), and (y,z). Let’s introduce the direction cosines for the unit
normaln = cosai+ cosfj + cosy K, where a is an angle between normal and x-axis (n -1 =

cos a), etc. Then the are of projection of dA onto (v, z), dydz, is equal to

(tux tv) -1
dydz = cosadA = (n-i)dA =
[ty Xty

(6.6.7) dxdz = cosfdA = (n-j)dA = |(t, Xt,) jldudv
dxdy = cosydA = (n-KkK)dA = |(t, X t,) - K|dudv

|t, X t,|dudv = |(t, X t,) -i|dudv




6.6. Surfaces

The parametric representation
r(u,v) =x(u,v)i+yu,v)j+ z@u, v)k

actually define two surfaces that are different in every
point by the direction of the normal: one surface has
normal N = t,, X t,,, another has normal —N.

If we choose a unique direction of the normal in every
point of the surface, we say we choose orientation of the
surface.

A smooth surface S is called orientable if the normal
direction given at an arbitrary point of S can be continued
in a unique and continuous way to the entire surface.

A piecewise smooth surface S is called orientable if we
can orient every smooth piece of S so that along each
curve C,, which is a common boundary of two pieces S;
and S,, the positive direction of C, relative to S; is
opposite to the direction of C, relative to S,.

Example: Mobius strip is the nonorientable surface:

Piecewise smooth surface
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6.7. Line integrals of scalar and vector fields

Let’s consider an oriented curve C given by the parametric

representation: B e
r(t) =x(i+ y()j+ z(t)k, as<t<b
We assume that C is a smooth curve, so r’ = dr/dt exists =
in a any point of C and the linear element is ds =
JXE Ty % 724t 4
The line integral of a scalar field f(r) over the curve C is
the integral
b
f f(r)ds = j Fe(0), (), 2()VXZ + y'% + 224t (6.7.1)
a
C

The line integral of a vector field F(r) over the curve C is the integral

b b b
j F(r) -dr = j (Fedx + F,dy + F,dz) = j (E.x' + Fy' + F,z')dt = f F-r/dt (6.7.2)
C a a a
The curve C is called the path of integration. If r(a) = r(b), then C is the closed path and the

line integral of a vector field is called circulation of the vector field and denoted as fﬁc F(r) - dr.
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6.7. Line integrals of scalar and vector fields

Note: Direction that corresponds to increasing parameter t is called positive.
Example: Let’s consider motion of a point mass in a force field F(r) (e.g. gravitational field).
Then the line integral over the trajectory A = fc F(r) -dr = fc F(r) - vdt is the work done by

force F.

Properties of the line integral:

1. Linearity
j(aF+bG)-dr=af F-dr+bj G-dr
C C C
2. Additivity
JF-dr= JF-dr+ f F-dr
Cc C1 C>
3. Additivity allows one to extent definition of the line integral to any piecewise smooth curve
C2
jF-drzsz-dr C;
- Cy
C L C;
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6.7. Line integrals of scalar and vector fields

Theorem:

Proof:
Let’s consider another parameterization of curve C with some parameter s: r*(s) = x*(s)i +

y*(s)j+z"(s)k, a* <s < b*.Since it is the representation of the same curve, s = s(t). Then

b* b
ds
J F(r*) -dr* = j (Bx™ + Fy” + F,z")ds = j (Bx™ + Ey™ + Fz") Edt
a* a
i b *
= J (BEx"+Ey +Fz)dt = f F(r) - dr e
a C e — xl
Example 1: F = 0i + xj + OK. Let’s calculate line integral over a straight path. dt
Parametric representation of the path:
r(t) =[x+ O —x)tli+ [y + 0 —yDtli+ [z + (2 —z)tlk 77 o (X0, V2, Z3)
r'=(x;, —x)i+ (v, —y)j+ (22 —z)k 0<t<1
1 1 C
j F(r) - dr = j xy'dt = f [x1+(xz — x1)t](y2 — y1)dt
C 0 y +92 (X1, Y1, Z1)
2 1
= 5 V2 —y1) / X
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6.7. Line integrals of scalar and vector fields

Example 2: F = zi + xj + yK, Line integral over the helix curve. Radius 1 = 1
Parametric representation of a helix curve around axis z: Pitch P = 6m
r(t) = costi+sintj+ 3tk, 0<t<2m E

r; (t) = —sinti+ costj+ 3k

F(r(t)) 1./ (t) =(3ti+ costj+sintk)-(—sinti+ costj+ 3Kk) x
= —3tsint + cos?t + 3sint

27

f F(r) - dr = (—=3tsint + cos?t + 3sint)dt = 7r
0

C

Example 3:If f = 1,thenl = fc f(r)ds is the length of curve C.

Example 4: if f(x,y,2) = pr? = p(x? + y*?), where p is the linear density of the curve (mass
per unit length) and r = /x? + y? is the distance from the point to the axis 0z, then

I, = j p(x* +y*)ds
C
is the moment of inertia of curve C about z-axis.
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6.8. Gradient, Divergence, and Curl

Gradient
Let’s consider a scalar field f(x,y,z) = f(r). Gradient of this field is the vector field grad f:
grad f = Vf = gl+—f]+gk (6.8.1)
dy” 0z
Calculation of grad f can be considered as an application of the differential operator VV (nabla)
d.d . 0
V= axl + ay] + aZk (6.8.2)

to the scalar field f. Differential operator V can be viewed as a symbolic vector.

Let’s consider a 3D scalar field and define some directional vector d = d,i + d,,j + d K of unit

length (|d| = 1) and f(s) = f(r + sd). Then the directional derivative of the scalar field f(r)
in the direction of vector d is

DO _ o fa s —f@) _ . f() = f(0) _0f(s)
af =734 = I s T s T s |

The directional derivative indicates the rate of change of the scalar field f in the direction of
vector d. Let’s calculate Dqf through partial derivatives df /dx etc. using the chain rule:

Ddf—ﬂd +g§d g’;d =Vf-d (6.8.3)
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6.8. Gradient, Divergence, and Curl

Note: Gradient and directional derivative are easily applied to 2D fields:

af of af af
d—l7——+—, D——d+
grad f = Vf =2 i+ 7] of 7y &
Properties of gradient and directional derivatives:
1. Direction of Vf indicates the direction of the maximum increase of the scalar field f. The
direction of the maximum increase is given by such d for which Dgf is maximum. From
definition of the dot product

Daf =Vf-d =|Vflld| cosy = |Vf| cosy

d, =Vf-d (6.8.4)

where y is the angle between Vf and d. Dy4f is maximum, when y =0, i.e. d is directed
along Vf.

2. If we introduce an isosurface in point (xq, yo, Zo), Tangent plane f = const
which is defined by the equation f(x,y,z) = ’)
f(x0,¥0,29) = c = const , then Vf in this point is
directed along the surface normal vector.

In order to prove it, let’s introduce a curve at the
isosurface going through point (xg, vo, Zg), which is
given by the vector function r.(s) = x.(s)i+
Ve (8)j + z.(s)k. Since this curve lies on the  The surface normal vector is perpen-
isosurface, it should satisfy dicular to the surface tangent plane.
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6.8. Gradient, Divergence, and Curl
fxc(8),yc(s),z:(s)) = ¢

Let’s differentiate this equation with respect to s in point (xg, Yo, Zg). Then we will have
df dx, N af dy, N df dz,
dx ds 0dy ds 0z ds

where t = dx./dsi+ dy./dsj + dz./dsKk is the tangent to the curve which lies in the
tangent place to the surface. Thus, Vf is orthogonal to any vector lying in the tangent plane,
i.e. it is the surface normal vector.

=0 = Vf-t=0

3. Gradient is the physical vector, which retains its direction and length after any coordinate
transformation. The gradient is normal to the isosurface and its absolute value is equal to
the maximum increase of the scalar field. Since these properties of the scalar field f(r) do
not depend on coordinates, the direction and absolute value of Vf also do not depend on
the choice of coordinates.

Example 1: Potential energy and force of the spherically symmetric gravitational field.

The potential energy of a point mass m in the spherically symmetric field of mass M with center
in a point (xg, Vo, Zg) is equal to

U(x,y, Z) = —GMm/r, r= \/(X _ X0)2+(y - y0)2+(Z - ZO)Z

Then
VU = —F

_GMm x—xy, Y—Yo, Z—Z
_rz(r1+ r1+rk)




6.8. Gradient, Divergence, and Curl

Note: In 2D, the contour lines of the scalar field f(x,y) = const and field lines of its gradient
Vf constitute two families of curves that are locally normal to each other in every point.

Example 2: Electric field of a dipole  ¢(x,y) = —k 1 +k 1

Ja—aty? C Jx+ a)?y?
y E=Vop

Vg
o \ Contour lines of the electrostatic
Potential ¢

Field lines of the electrical field E

Note: Two families of locally orthogonal curves can be used in order to introduce non-Cartesian
orthogonal coordinates in 2D.
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These curves can be used in order to introduce orthogonal coordinates.
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6.8. Gradient, Divergence, and Curl

Example 4: Application of the gradient in the optimization problem

Optimization in (x, y) space = finding a maximum of a goal function

z=f(xy)

1. Plot contour lines f(x,y) = const

grad f is normal to contour lines

3. grad f corresponds to the
direction of the fastest increase of
the goal function

4. Steps along grad f lead to a local
maximum

N

%
30 90
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6.8. Gradient, Divergence, and Curl

Divergence
Let’s consider a 3D vector field F(x,y,z) = F(x,y,2)i+ E,(x,y,2)j + F;(x,y,z)K. The
divergence of the vector field is the scalar field div F, which value is equal to

0F, 0F, oF,

6.8.5 ivF= V- .F=
(6.8.5) div ox "oy oz

Properties of divergence:

1. Let’s consider a small parallelepiped of volume AV =
AxAyAz. For any face we can define the flux of vector
field F as F = F-nAA, where n is the unit vector
normal to the face and directed outwards and AA is the
face area. Then the flux through the whole surface is

AF(F) = E.(x + Ax,y,z)AyAz — E.(x,y,z)AyAz + E,(x,y + Ax, z)AxAz — F,(x,y, z)AxAz

0F, O0F, O0F, _
+E,(x,y,z + Az)AxAy — E,(x,y,z)AxAy = <6x + 3y + e ) AV = divF AV
Now we see that
. . AF(F)
k= 0 v (6.8.6)

Divergence div F defines the ratio of the flux of the vector field F through the surface of an
(infinitely) small domain to the volume of this domain.
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6.8. Gradient, Divergence, and Curl

2. Divergence is the physical scalar, i.e. its value does not change at any coordinate
transformation. Proof is based on Eg. (6.7.6), but also can be performed directly by
calculating div F after a coordinate transformation.

Example 1: Divergence of a central vector field. The potential energy of a point mass m in the
spherically symmetric gravitational field of mass M with center in point (xg, Vo, Zg) is equal to

Ulx,y,z) = —GMm/r, r = \/(x — X0)?2+(y — y9)?+(z — zp)?2.

Then
GMm x —xq9. Y—Yo. Z—Z GMm _
VU = —F =" ( i — HS- rzk)_ - 8,
d(—F. Jd x—Xx r° —3r“(x — x r
(CED _ oy 0X=%o_ (x = x0)?/
0x ox 713 r6
GMm
V-(VU)=-2 3
T

Note: Divergence of any central vector field is a central scalar field.

Example 2: Gradient and divergence of a central field in spherical coordinates.

If (x9,V0,2Z9) = 0, then the scalar field U(x,y,z) = U(r) depends only on the distance to the

center of coordinates and, thus, it is spherically symmetric with respect to 0. Then

by U, _ GMm_ 7 oyy < 2.0V _ _, GMm
“or T ©r -~ or or r3

72
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6.8. Gradient, Divergence, and Curl

The divergence is important for models based on the conservation laws: If F is a flux density of
some physical quantity, then div F is related density of sources or drains of this quantity.

Example 3: Mass conservation in the fluid flow

F = pv, mass flux density of a fluid

E.(x,y,z)AyAz = pv,AyAz, mass flux through the face AyAz
AF (pv), mass flux through the whole surface

M = pAV, fluid mass inside the parallelepiped

Mass conservation law (no sources or drains for mass):
dM = —AF (pv)dt
dp
AV —+ AF(pv) =0

; ot (ov)
p  AF(pv)
ot ar
ap . - :
— + div(pv) = 0 : Continuity equation

dt

Steady-state flow (0/dt = 0): div(pv) = 0, which means the absence of internal sources or
drains of mass inside the fluid flow.

Incompressible flow (p = const): divv = 0.
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6.8. Gradient, Divergence, and Curl

Curl
Let’s consider a vector field F(x, y, z) = Fi + E,j + F;K. The curl curl F of F is the vector field
i j Kk
d ad 0 0F, O0F, 0F, OF, oF, OF,
lF=VXF= = — I — | — k (6.7.7
cur ox dy 0z <6y az>‘+<az ax I\ Gx ~ 3y )k 077
E., F F
This definition is valid for right-handed Cartesian coordinates. For left-handed coordinates, the
definitions includes the negative sign: curl F = — V X F.

Properties of curl:
1. The curl is the physical vector, i.e. it does not change at any coordinate transformation

between any right-handed coordinates.

2. Let’s assume that v(r) is the velocity field of a rigid body. It is proved in kinematics that the
velocity field in the rigid body with respect to pole at point ry can be represented in the form

v(r) =v(ry) + o X (r —ry)

where w is the angular velocity vector. Let’s use right-handed coordinates where w = wKk.
Thenw X (r—ry) = —w(y — yo)i + w(x — xy)j

i j k
d 0 0 1
— - — —| = — - _ 6.7.8
curl v ™ 5 . 20k=20 = 5 curlv | )
-0y —yy) wlx—x9) 0
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6.8. Gradient, Divergence, and Curl

Deformable body: Relative positions of points vary in the course of motion

One can show that for arbitrary deformable body (solid, liquid or gaseous), the kinematic
formula can be generalized in the form:

Time t4

1
v(r) = v(ry) + Ecurl VX (r—rp)+ Vger

where v, ¢ is the deformation velocity which describes the change of relative positions of
points in the body due to its deformation. Thus, for any body, rigid or deformable, the curl of
the velocity field describes the part of the motion that corresponds to the rigid rotation.

Rigid body rotation, vg.r = 0 Deformable body rotation, vg.r # 0
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6.8. Gradient, Divergence, and Curl

3. Circulation of the vector field F = F1 + F,j on the plane

x4+ v
’ 3’]’ dt
V&2 + ()2

b
[= f (Fedx + F,dy) = f(in + F,j) -
a

Let’s consider a small rectangle in xy-plane that corresponds to increments Ax and Ay . We can
introduce the circulation AI" of the vector field along the contour of this rectangle:

AT = F(x,y) - (Axi) + F(x + Ax,y) - (Ayj) + F(x,y + Ay) - (—Axi) + F(x, y) - (—Ayj)

E.(x,y+ Ay) — E.(x, E,(x + Ax,y) — E,(x,
By +Ay) - E( y)AyAx+ y( -BG&y)

= A
Ay Ax Y

0F, 0F, d0F, OF,

dy yax 0x i ( dx 0dy (curl F)
Now we see that

1F = i Al
(6.8.9) (curl F) - n = AS0 AA y

i.e. limit of circulation of a vector field over a small contour to
the area bounded by this contour is equal to the component X
of the curl normal to the contour. Right hand-side screw rule
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6.8. Gradient, Divergence, and Curl
Laplacian

The Laplacian of a scalar field f (x,y, z) is

2 2 2
Af =V -Vf=V?f =div(grad f) = gx]; + Zx]; gx]; (6.8.10)

Example: The heat conduction equation in the medium with constant properties is

oT
’DCE = —V . (—kVT) = kAT

Common propertiesof Vf,V - F,V X F, and sz:
» Vf,V-FV XF,and \72f are invariant with respect to coordinate transformations.
» Linearity, e.g.,, V(af + bg) = aVf + bVg, where a and b are constants.

Special scalar and vector fields:

» Vector field v(r) is called gradient (conservative) field, if there is scalar field f(r), such that
v = grad f. Scalar field f is called the potential of the vector field v.

» Vector field v(r) is called irrotational field if curl v = 0.
» Vector field v(r) is called divergence-free field if divv = 0.
> Vector field v(r) is called central field if v = v(|r|)r/|r|.
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6.8. Gradient, Divergence, and Curl
Properties:

» Any gradient field is irrotational, i.e. curl (grad f ) = 0.
» Curl produces divergence-free field: div (curl v) = 0.
> Any central field is a gradient field with the potential f(r) = u(|r|), u(r) = [v(r)dr +c.

Example: Irrotational fluid flow.

Fluid flow is called irrorational (or potential) if it’s velocity field is irrorational, i.e. curl v = 0.
Now assume that v = V¢, then curl v = curl (W) = 0. ¢ is called the velocity potential.

If fluid flow is incompressible, when the fluid density is constant, and the velocity field is
divergent-free, V - v = 0.

Then the velocity potential in any irrotational incompressible fluid flow should satisfy the
Laplace equation:

V-(Wp)=0 or Ap=0.
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6.9. Path independent line integrals

A line integral is said to be path independentin a

B = (x,,v,,2
domain D if for every pair of endpoints A and B Y (X2, y2,22)
in the domain D, the line integral has the same value
for all paths in D that begin in A and end at B. D
Theorem 1:

A line integral for the vector field F with continuous A= (x1,y1,21)
X

components in D is path independent in D if and only /
z

if F is a gradient field of some potential f, i.e. F = V'f.

Proof: We’ll prove only the first part of the theorem. Let's assume that F = I/f. Then along the
integration path f is a function of t: f(t) = f(x(t), y(t) z(t)) and
b
fF ] _f of dx ofdy ofdz)_ f itm fC . (6.9.1)
r = ax dt ay dt aZ dt f xZ’yZ’Zz f(xliyl’zl)

C a
Thus, the line integral is determined only by values off in the start and end points, i.e. it is path
independent.

Theorem 2:

A line integral for the vector field F with continuous components in D is path independent in D
if and only if any circulation of F (line integral over a closed path in D) is zero.

Proof: From Eq. (6.6.5): i) F-dr=f(xy,v,21) — f(x,y1,2,) =0
c
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6.9. Path independent line integrals

Consequence 1: If field lines are closed curves in some region, the vector field is non-
conservative (non-gradient) and line integrals are path dependent in this region.

Proof: If the field lines are closed, chose a path of integration
which coincides with a close field line. Then in any point of such
line F-dr = F - tdt > 0 and, circulation can not be equal to zero.

@

Consequence 2: Circulation of any gradient field is zero.

Theorem 3:

A line integral for the vector fi

in D is path independent in D if an
F -dr

is the total differential of some function f.

Proof: According to theorem 1, the line integral is path independent if and only if F = Vf. But

then F - dr = df, i.e. the differential form (4.6.6) is the total differential of the field potential f.

F.dx + F,dy + F,dz (6.9.2)

From the theorems 1-3 we see that the following statements are equivalent:

1. Line integral for F is path independent.

2. Fis agradient field.

3. Any circulation of F is zero.

4. Differential form (4.6.6) for F is the total differential (Criterion for exactness will be derived
from Stokes's theorem later).
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6.9. Path independent line integrals

Example: Circular cylinder in cross flow with attached circulation zone (moderate Reynolds
numbers)

Steady-state flow: streamlines = trajectories of fluid particles
F' -_ —— - ]

» The circulation zone appears due to action of fluid viscosity which induces the flow
detachment.

» For the fluid velocity field, the line integral is path dependent.
» The fluid velocity field is non-potential, the theory of potential flows can not be applied.
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6.9. Path independent line integrals

Path independent integrals of work in mechanics: Existence of potential energy
Let’s consider a point mass that is places into a force field F(r), i.e. in every point with position
vector r, the force F(r) is exerted on the point mass.
The work W done by this force along the trajectory C of this point mass started in point r; and
ended in point r, is given by the line integral

W(C) = j F-dr (6.9.3)
C
The force (force field) F(r) is called conservative if line integral in Eqg. (6.9.1) is path

independent, otherwise F(r) is called non-conservative force.

According to theorems 1-3, we can give the following
alternative definitions of the conservative force: F(r) is
conservative if
1. Line integral for F is path independent, i.e. work of

force does not depend on the shape of trajectory, but

is determined only by its start r; and end r, points. G4 r,
2. Fis a gradient field: F = —VU, where scalar field U(r)

is called the potential energy.
3. Any circulation of F is zero, i.e. work W done by F at

any closed trajectory (r; = r3,) is equal to zero. %or conservative force,
4. Differential form F - dr is the total differential. W(c,) =W(C,)

Iy

»
»
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6.9. Path independent line integrals

Thus, conservative nature of the force is equivalent to the existence of the potential energy
U(r). Then according to Eq. (6.9.1)

W(C) = W(r,r,) = J F-dr=U(r,) — Ur,) (6.9.4)
C

This equation together with Newton’s second law of motion results in the conservation law of
the total mechanical energy.

Components of the potential force depend only on coordinates (position of the point mass) and
do not depend, e.g., on the velocity vector, acceleration vector, time, etc.

Conservative force fields F(r) play very important role in mechanics. In particular, all
“fundamental” interaction forces including

» Gravity force

» Electrostatic force

» Interaction forces between individual atoms

are all conservative force.

At the same time, friction force are non-conservative, since it usually depends on velocity.

In order to define a conservative forces field, it is sufficient to defined the potential energy of
this field as a function of coordinates, U = U(x,y, z). This approach is widely used, e.g., for
formulation of interatomic forces in Molecular Dynamics (MD) simulations.
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6.10. Double integral

“Ordinary" integral = integral of a function of a single argument over length in 1D domain.
Double integral = integral of a function of two arguments over area in 2D domain.
Triple integral = integral of a function of three arguments over volume in 3D domain.

Let’s consider a two-dimensional space — xy-plane, a region R - set of points and on this plane,
and a 2D scalar field f(r) = f(x, y) that is defined in every point of R.

Let’s do the following steps:

1. Divide domain R into N subdomains R, (n = 1,..N, N >> 1) of area AA,,.
2. Inside every subdomain choose a point r;, and value of the scalar field f(r},).
3. Calculate AA,,,,,= max( AA,,).

4. Calculate the sum YN_, f(r,)AA,,.

R
Then the double integral over domain R is the limit y T
N
(6101) jj f(l‘)dA — AAlim 0 f(l‘n)AAn HEEEEN
i max™ —

In Cartesian coordinates dA = dxdy and

(6.10.2) ﬂ f(r)dA = ﬂ f(x,y)dxdy X
R R
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6.10. Double integral

Basic properties of the double integral:

1. Linearity (a, b = const)

ﬂ[af(r) + bg(r)]dA = aﬁ f(r)dA + bﬂ g(r)dA
R R R

1. Additivity

R R
3. Mean value theorem: If R is simply connected and f (r) is continuous in R, then there is
such point ry in R that

J f(r)dA=Hf(r)dA +ﬁf(r)dA g
1 R,

Example of R which is not

simply connected
|| rwaa = o : :
R 1
where A is the area of R. (R is called simply connected, - E
if any closed curve in R can be continuously shrunk to @
any point in R without leaving R)
4. Physical meaning of the double integral: If f = 1,
then the double integral is the area of R. ¥ %
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6.10. Double integral

Calculation of the double integral by two successive integrations for a simple domain in
Cartesian coordinates
We say that R is simple with respect to x if the boundary of R can be described by two
boundary functions h(x) and g(x) as shown in the figure.
Let’s introduce subdivision of R with the help of rectangular cells of even size AA4,, = AxAy:

N M y Ax

j f(x, y)dxdy = AJA“;“%OZ Zf (x1,y;)Axdy = d

R =1 j=1 -
(6.10.3) N [/ M b / g(x) y i) Ay

_ J
Jim POy |ax= [ | roady Jax 7T S
i=1 \j=1 a h(x) C h(x)
If R is simple with respect to y, then a X; b ¥
d / q(y) Y
6.104) [ feeydxay = [ | | ey |ay
R c \r()

If R is not simple, it usually can be represented as a set of
simple adjoin subdomains, so the double integral can be
calculated using (6.10.2) and (6.10.3) and additivity.
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6.10. Double integral

Note 1: If domain R isarectanglea < x < b,c <y < d then

|| reyydndy = jb fd e y)dy | dx = jd jb fy)dx | dy
R a C Cc a

Note 2: If domain Risarectanglea < x < b,c <y <dand f(x,y) = fi(x) fo(y), then

f f(x,y)dxdy = jb f1(x)dx jd f2(y)dy

R

Example: Mass, moment of inertia with respect to z-axis, and internal energy of a cylindrical
body of length L
yoriens dV = Ldxdy

M = Lﬂp(x,y)dxdy dM = pdV
R

IL,=1L ﬂ p(x,y)rdxdydz = L ﬂ p(x,v)(x? + y*)dxdy
R R

U= Lﬂ p(x,y)u(x,y, z)dxdy r=Jx2 + y2
R

X
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6.10. Double integral

Change of variables in the double integral

Let’s introduce new variables u = u(x,y) and v = v(x, y). We assume that this transformation
of coordinates is non-degenerate in R, so x =x(u,v) and y =y(u,v) exist. In new
coordinates, domain R transforms into domain R,.

. : . y
Question: How should we change the integrand in order
to guarantee that the double integral in old and new
coordinates has the same value, I, = [,;;,?

by = || fGy)dxay
R

I, = j j f(u, v)dudv %
R

Obviously f(*u(x, y),v(x,y)) # f(x,y), e.g.
if f = 1,u = ax,v = by, then f = 1/(ab).

Let’s introduce a rectangular mesh of cells on the uv-
plane. Then

N M Au U
ﬂ fu,v)dudv = Aulgyn_)oz Z f(us, Uj)AUAV For Iy, = Iy:
i=1 j

R, fu, v)Auldv = f(x(u,v), y(u,v))AA
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6.10. Double integral

fu, v)Auldv = f(x(u,v),y(u,v))AA
We should calculate AA. Every rectangular cell of area AuAv in uv-plane corresponds to a
curvilinear cell of area AA in xy-plane. If Au and Av are sufficiently small then the cell in xy-
plane is close to a parallelogram with edges parallel to vectors

¢ _ax_+ay_ N _0x_+0y_
= 5u T ouY v =9 T oy
The area of the parallelogram is
i j k
0x dy
M = |(t,00) x (6,00 = [z 2% 3224 0| = |jauav
0x 6yA 0
v v dv v
where J is the Jacobian determinant, determinant of the 2D Jacobian matrix,
ox Ox
] = Ju Jdv
dy 0dy
du Jv
And the rule of the variable change in the double integral is
(6.10.5) || reydandy = [[ v yeu v)iidudy
R R,
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6.10. Double integral

If we want to change variables from the old variables x, y to the new variables : u = u(x, y) and
v = v(x,y), we must:

1. Find an image R, of the domain R on the uv-plane.

2. Find the inverse transform x = x(u, v) and y = y(u, v).

3. Calculate the Jacobian of the inverse transform.

4. Change the integrand according to Eq. (6.10.5).

Note: Usually the purpose of the variable change in the double integral is to make the shape of
boundaries of R, as geometrically simple as possible.

Example: Calculation of the area of the circle.
A= U dxdy,where R: x* + y? < (D/2)?
R

Let’s perform a transform to polar coordinates: x =rcosf,y =rsinf, ] =r.

In polar coordinates, the image R, istherectangle: 0 <r<D/2,0<60 <2rm
2m /D/2

A:!dedy=of jrdr d9=ﬂ<§)

0

2
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6.11. Triple integral

“Ordinary" integral = integral of a function of a single argument over length in 1D domain.
Double integral = integral of a function of two arguments over area in 2D domain.
Triple integral = integral of a function of three arguments over volume in 3D domain.

Assume that we consider a three-dimensional xyz-space, a region T - set of points and in this
scape, and a 3D scalar field f(r) = f(x,y, z) that is defined in every point of T.

Let’s do the following steps
1. Divide domain T into N subdomainsT,, (n = 1,..N, N >> 1) of volume AV,.
2. Inside every subdomain choose a point r;, and value of the scalar field f (r;,).
3. Calculate AV, 4,,= max( AV},). T,

4. Calculate the sum Y N_, £ (1,)AV,,. Y

Then the triple integral over domain T is the limit

N

(6.11.1) ﬂ FOV = lim Y fEr)A,
T

- L e
max VY b oy SN .
In ...............

n=1

In Cartesian coordinates dV = dxdydz and

(6.11.2) Jﬂf(r)dvzﬂ f(x,y,z)dxdydz
T T
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6.11. Triple integral

Basic properties of the triple integral:

Linearity (a, b = const)

ﬂj [af (r) + bg(r)] dV—aﬂff(r)dV+bﬂfg(r)dV

1. Additivity

ﬁ fr)dv = H f(r)dV+jf f(r)dv / X

Mean value theorem If T |s simply connected and f(r) is continuous in T, then there is

such pointry in T that
[[| rwav = raow
T

where V is the volume of T. (T is called simply connected, if any closed curve in T can be
continuously shrunk to any point in T without leaving T)

4. Physical meaning of the triple integral: If f = 1, then triple integral is the volume of T.
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6.11. Triple integral

Calculation of the double integral by three successive integrations for a simple domain in
Cartesian coordinates
Domain T is called simple with respect to some coordinate, e.g., z, if the surface of the domain
can be described by two boundary functions z = g(x,y) and z = h(x,y), see figure. For the
domain simple with respect to z, the triple integral can be calculated by successive integration.
Corresponding formulae can be obtained similar to the case of the double integral by
introducing subdivision of T with the help of “rectangular” cells of even size AV}, = AxAyAz:

j j f(x,y,z)dxdydz = ’

T 9(xi, yj) T
N M L
AxAl}i]rAnZ_)O S“ S“ S“ f(xi,yj,zk)AxAyAz = /i
i=1 j=1 k=1 C
N M [ L k%
g ) D 2 faiyz)az |axty = RGLY)
i=1 j=1 \ k=1 V)
gxy)
. y
(6.11.3) jj f f(x,y,z)dz |dxdy } Q
X

R(x,y) \h(x,y)
| | | R(x,y)
The double integral can be further calculated with two successive

integrations if R(x, y) is simple with respect to either x or y.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 64



6.11. Triple integral

b/ gx) [/ glxy)

(6.11.4) ﬂ f(x,y,z)dxdydz=f f j f(x,y,z)dz |dy |dx
T

a \h(x) \h(xy)
Note 1: If domain T isthebara < x < b, c <y <d,g <z < hthen

U f(x,y,z)dxdydz = flf f(x,y,z)dz|dy |dx

Note 2: If domain T is the bar anSb, c<y<d, g<z=<h and f(x,y,z) =

f1(x) f2(9)f3(2), then

b d "
g f(x,y,z)dxdydz = E[fl(x)dx !fz(y)dy ffg(Z)dZ

Example: Mass and moment of inertia of a 3D body with respect to z-axis

M = Ufp(x,y,z)dxdydz
T

r=yx2+y2

I, = LUp(x,y,z)rzdxdydz = g] p(x,y,z)(x*+y?)dxdydz

X
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6.11. Triple integral

Change of variables in the triple integral
Let’s introduce new variables u = u(x,y,z), v=v(x,y,z), and w = w(x,y,z). We assume
that this transform of coordinate is non-degenerate in T, so x = x(u, v,w), y = y(u, v,w), and
z = z(u, v, w) exist. In new coordinates, the domain T transforms into domain T,.
Question: How should we change the integrand f in order to y
guarantee that the triple integral in old and new coordinates
has the same value, Iy, = [, ?

Ly, = f J f(x,y,z)dxdydz, IL,,, = f J f (u, v, w)dudvdw
T T,

Let’s introduce a rectangular mesh of cells

X
in the uvw-space. Then P A
f j f (u, v, w)dudvdw
T.

N M L
= lim F(u;, vi, wy, ) AuAvVAW

AMuAvAW—0 L L ‘f(‘ J k)
i=1j=1k=1
u

w
For Ly, = Lypw: fu, v, w)AuAvAw = f(x(u,v,w),y(u,v,w), z(u, v, w))AV
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6.11. Triple integral

f (u, v, w)AuldvAw = f(x(u,v,w),y(u,v,w), z(u, v,w))AV
We should calculate AV. Every rectangular cell of volume AuAvAw in uvw-space corresponds to
a curvilinear cell of volume AV in xyz-space. If Au, Av, and Aw are sufficiently small then the

cell in xyz-space is close to a parallelepiped with edges parallel to vectors

dx_ dy. 0z dox_ dy. 0z dx 0dy . 0z
ty=——i+=j+ok ty=-it+-"j+ Kk t,=—i+—j+—k

The volume of the parallelepiped is

0x A dy A 0z
ou ¢ ou ¢ ou ¢
0x d 0z
AV = |(ty Au) - [(t,A0) X (b, A)]] = || Z2ar 2av Zav|| = J1auavaw
dv av av
0x A dy A 0z A
odw v dw v ow v

where J is the Jacobian determinant, the determinant of the 3D Jacobian matrix,

dx Ox Ox
Ju Odv Jw
J= dy dy 0y
Ju Jdv oJOw
dz 0z 0z
Ju Jdv JOw

ME 501, Mechanical Engineering Analysis, Alexey Volkov 67



6.11. Triple integral

And the rule of the variable change in the triple integral is

(6.11.5) U f(x,y,z)dxdydz=ﬂ f(x(u,v,w), y(u,v,w), z(u, v,w))|J|dudvdw
T T,

If we want to change variables from the old variables x, y, z to the new variables u = u(x, y, z),
v=v(xy),w=w(x7y,z) we must:

1. Find an image T, of the domain T in the uvw-space.

2. Find the inverse transform x = x(u, v,w), y = y(u,v,w), and z = z(u, v, w) .

3. Calculate the Jacobian determinant of the inverse transform.

4. Change the integrand according to Eq. (6.11.5).

Note: Usually the purpose of the variable change in the triple integral is to make the shape of
boundaries of T, as geometrically simple as possible.

Example: Calculation of the volume of a sphere.

V= Hf dxdydz,where T: x? + y? + z?> < (D/2)?
T

Transform to spher. coordinates: x = rcos @,y = rsinf cos@, z = rsin@sing, ] = rsin6.

In spherical coordinates, image T, isthebar: 0 <r <D/2,0<0 <1, 0< @ <2m
w /D/2

2m
4 (D\?
V=ﬂ dxdydzzj J jrzdr sin 6 d6 dcp=§n<5>
T o lo \o _




6.12. Surface integrals of scalar and vector fields

Let’s consider some surface S given by the parametric representation:
r(u,v) =x(u,v)i+yu,v)j+ zu,v)k

where (v, u) vary over a region R on the uv-plane.

Let’s assume that S is piecewise smooth, so that S has a normal vector N = t, X t,, and a unit
normal vector n = N/|N]| at every point except perhaps some edges or cusps. In every point,
where N exists, dA = [N|dudv.

For a given scalar field f(x, y, z) and surface S, the surface integral of the scalar field is defined
as

U fdA = H f(r(u,v))IN|dudv (6.12.1)
R

S

Note: Since the RHS in Eq. (6.12.1) depends only on |N|, Eg. (6.12.1) provides a unique value
independently on the surface orientation and, in particular, is valid for a nonorientable surface.

For a given vector field F(x, y, z) and oriented surface S, the surface integral of the vector field
is defined as

gF'“dA = g F(r(u,v)) - N(u, v)dudv (6.12.2)

Note: Since RHS in Eq. (6.12.2) depends on N, surface integral (6.12.2) changes its sigh when the
orientation of the surface changes.
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6.12. Surface integrals of scalar and vector fields

Properties of the surface integrals:

1.

If we introduce direction cosines for the surface normal such that n = cosai+ cosfj+
cosy K, then cosa dA = dydz, cos f dA = dxdz, and cosy dA = dxdy, so that

F-ndA = F.dydz + F,dxdz + F,dxdy

and the surface integral can be calculated as

ﬂ F-ndA = H (Frdydz + E,dxdz + F;dxdy)
S S

Linearity

jJ(ClFl-I_CZFz)‘ndA =C1ij1'ndA+C2ij2‘ndA
S

S S

ﬁF-ndA=ﬁF-ndA+ﬁF-ndA
S S1 S>

Surface integral of the scalar field f = 1 gives the area of the surface S

A =ﬂ dA=U|N|dudv=U|tu><tv|dudv
S R R

Additivity
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6.12. Surface integrals of scalar and vector fields

5. Definition of the surface integral in terms of the sum limit.
Let’s consider a smooth surface S given by the parametric representation r = r(u, v) and
let’s divide it (e.g., by grid lines u = const and v = const) into a large number N of
subsurfaces AS;. For every subsurface, let’s define a point r;, which belongs to the
subsurface, n; is the unit normal to the surface in point r;, AA; is the area of the subsurface,
and AA,, 4, = max(4;). Then

ZF(rl) n; AA; D OJF ndA
(N>) g

Example 1: Flux density and flux.

In applications, the vector field F often has the meaning of the flux density of some physical
guantity, i.e. amount of the physical quantity transferred through the surface of unit area
perpendicular to the field vector per unit time.

F = pv : Mass flux density in the fluid flow.
F = q : Heat flux density.

Then the surface integral of a such vector field has meaning of the flux, i.e. the amount of the
physical quantity transferred through a whole surface S:

fpv-ndA : Mass flux; jq-ndA : Heat flux
S S
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6.12. Surface integrals of scalar and vector fields

Example 2: Moment of inertia of a surface about z-axis.

In order to calculate the moment of inertia of a surface (thin shell) with respect to z-axis, we can
introduce the scalar field f(r) = a(r)(x* + y?), where a(r) is the surface mass density (mass
of the thin shell per unit area of the shell). Then

I, = jsj o(r)(x? + y?)dA = !J o(r(u, v))(x%(u,v) + y*(u,v))IN|dudv

Example 2a: Moment of inertia of a homogeneous spherical shell (o(r) = 0, = const) with
respect to an axis going through the sphere center.

Parametric representation of the sphere:

r =R (sinvcosui+sinvsinu j + cosvk) 0<u<?2m
x(u,v) = Rsinvcosu O<v<m
y(u,v) = Rsinvsinu

dA = |N|dudv = R? sinv dudv

21T

T
I, = ﬂ a(r)(x? + y?)dA = o, j j R*sin3vdu dv =
S 0 0

T

— %(47100 R?)R? = zmR2

cos3v\ |V
ogoR*(2m) <— cosv + > 3

3 v=20
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6.13. Green’s theorem for a plane

Green’s theorem Counter-clockwise

C

1

clockwise

We’'ll divide the proof of Green’s theorem in two stages.
1. At the first stage, let’s prove the theorem for a special
region R whose boundary is a single closed path. Then

jj dxdy = jd qua—de dy = fd () y)_;(p(y) ]dy
0x ’ ’
c p(y) c
jQ(q(y) y)dy+jQ(p(y) y)dy = jéQdy
C
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6.13. Green’s theorem for a plane

b[ u(x) b

ﬂ dxdy = f gy dyl|dx = — J[P(x,u(x)) — P(x,v(x))]dx

v(x) a
= jP(x,v(x))dx +jP(x,u(y))dy =3€ Pdx
a b C

The sum of two obtained equation gives us Eq. (6.13.1).

2. Now let prove Eqg. (6.13.1) for arbitrary region
whose boundary consists of a few closed paths. In this
case the region R can be divided into a set of
subregions Ry, R,, etc., such that the boundary of every
subregion is a simple closed path. Then we can apply
already proved Green’s formula to every subregion

90 _oF -
ﬂ < )dxdy j (Pdx + Qdy)

l
Sum of aII these equation for all R; gives us Green’s
formula for the whole region: On the left we have
double integral for the whole region R (additivity), and
on the right all parts of the paths that are counted twice
will cancel each other due to their different directions.

M
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6.13. Green’s theorem for a plane

Consequence 1: Pdx + Qdy is the full differential if and only if (recall first-order exact ODEs)
adQ oJP

dx dy N
This is a particular case of the general theorem proved in the Section 6.14.

Consequence 2: Let F(x,y) = Fi + E,j + F;K be the vector field, which has a curl. Then

I F IF k= (22 2%
(curl F),= (curl F) -k = ox  y

Then Green’s theorem, Eq. (6.13.1), says that

ﬂ(curl F)-k dxdy = f(dex + E,dy) (6.13.2)

i.e. circulation of the 2D vector field is equal to the double integral of the z-component of the
curl over the region bounded by the integration path.

Consequence 3: Consider two evenly oriented paths, which can be ? o
continuously transforms one to another in R. Then for a 2D gradient 05 R :
field, circulations these two paths are equal to each other if the

region between them does not contain singular points of F (i.e. if @

F is continuous in R). Proof: Since curl F = 0, Eq. (6.13.2) reduces to

fFdr-%Fdr+¢Fdr—0=>¢Fdr—§>Fdr )
X

C Cy C, Cs

O
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6.13. Green’s theorem for a plane

Property 7@ F-dr = % F-dr doesnot hold even if curl F =0 if
C1 C3
1. Field F has a singular point in R.
2. Paths cannot be continuously transform one to another.
These cases are very important for potential flows in fluid mechanics.
Example 1a: 2D inviscid vortex: Flow field v with zero curl v, but with non-zero circulation

. r y . ry, T© x.
Flow potential ¢ = Earctan;, FIovaelloutyv =Vp = _%T‘_Zl + P
v, =V-§€ =O, Vo =V:08p = ——
’ " 0 O onr

2T
fv-drzjvgrdHZF,but fv-drz

€, =cosfi+sinfj

C(r) 0 C.

Example 1b: Irrotational flow potential flow over
a cylinder with non-zero circulation: One can
consider the flow field from the previous
example in the domain R: r = R, outside a
cylinder of radius Ry. Now R does not contain a
singular point, but circulation over C(r) is not
equal to zero.
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6.13. Green’s theorem for a plane

Vortexes develop in many natural and industrial flows:
e _ Rl

Vortex wake behin

Flows can be considered as
composed of discrete vortexes
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6.13. Green’s theorem for a plane

Red spot on Jupiter: a giant vortex
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6.13. Green’s theorem for a plane

Example 2: Calculation of the area of a region on xy-plane. If we introduce P(x,y) and Q(x,y)
such that d0Q/dx — dP/dy =1, then the LHS in Green’s theorem gives the area A of the region
R.Wecanuse,e.g.Q =xandP = QorQ = 0and P = —y. Then Green’s theorem reduces to
(x3,¥3)

1
Azfxdyz—fydxzzf(xdy—ydx)
C C C
Example 2a: Area of a triangle given by vertex coordinates

(X2,¥2)
(x1,¥1)

1 1 1
A= § xdy =20+ 1) = y2) + 5 (s + 2D = 72) +5 G +x)(0 — ¥)
C

X

Calculation of geometrical properties of triangles is a routine operation in
Meshing domains by triangulation

Computer graphics Mapmaking/GPS
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6.13. Green’s theorem for a plane

Consequence 4: Divergence theorem in 2D.
Assume that LHS in Eq. (6.13.1) is the divergence of some vector field F(x,y) = Ei+ E)j, i.e.

Q = F,and P = —F,, s0dQ/dx — dP/dy = divF. Then in the RHS of Eq. (6.13.1) we have

dx dy
%(de + Qdy) =f —Fy£ + FxE ds = f(Fxnx + Fyny)ds = f F-nds
C C C C

where n = n,i + n,j = (dy/ds)i — (dx/ds)j is the external unit normal (normal directed to
the exterior of R: if t = (dx/ds)i + (dy/ds)j is the tangent, then n is the normal since t-n =
0).

y

t

Thus

(6.13.3) ﬂ div F dxdy = j(F -n)ds

R

Eqg. (6.13.3) is the divergence theorem in 2D: Double integral of divergence over region R is
equal to the line integral of the normal component of the vector field over the boundary.
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6.13. Green’s theorem for a plane

Example 4: Mass flux through the plane nozzle.
In a steady-state flow, pv is a divergence-free field (p and v are fluid density and velocity):

V-(pv) =0

Then applying Eq. (6.13.3) to a region between two cross sections of a planar Laval nozzle, one
can conclude that the mass flux F (x) is constant for any cross section

b(x)
Fx) = j 0(%, )V (x,y)dy = const
a(x)

Sub=onmic SUPES o C

X
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6.13. Green’s theorem for a plane (optional)

Example 4: Double integral of the 2D Laplacian.
In many application, the Laplacian of a scalar field f (x, y) appears

0%f 0%f
_ p2f _ Y _
Af =Vef =V-Vf =div(grad f) = 722 +6y2
For instance: The heat conduction equation in a medium with constant properties is
o _ kAT
P9t ~

Then we can apply our 2D divergence theorem:

y Afdxdy = g div(Vf)dxdy = j(vf .n)ds = 2@ g_flds

For 2D heat conduction equation:

(6.13.4)

[[oeZaxay=kf Las o L[] percenorasiy=—§ a-nis o
pcatxy— anS or 7 pcT (x,y,t)dxdy = q-nds (6.13.5)
R C R C

where q = —kVT is the heat flux. Eq. (6.13.5) is the mathematical representation of the energy

conservation law for a 2D finite volume of a quiescent medium.
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6.14. Stokes’s theorem

Let's assume that we have an oriented surface S with normal n, whose boundary is a simple
closed curve with a given direction. We say that the orientation of the surface S and direction of
C satisfy the right hand-side screw rule (or corkscrew rule) if motion along C in the positive
direction corresponds to the anti-clockwise rotation when seen from the top of n. Cf

Stokes’s theorem:

r'

Let S be a piecewise smooth oriented surface in space and let the boundary C of S be piecewise

smooth simple closed curve. Let n be a unit normal vector to S and orientation of S and
direction of C satisfy the right hand-side screw rule.
Let F(x,y,z) be a continuous vector field that has continuous first partial derivatives in a

domain in space containing S. Then ; i Kk
61 1 dA d I - 72 1 7
- f (curl F) - ndA = f F-dr curl F = | == autior

or, in components

dr, an, di. i 6Fy 0F,
lf [(ay - az)dydz+ (é—a e a—@ dxdy

. f (Fedx + E,dy + F,dz)
{
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6.14. Stokes’s theorem

Proof:
1. We can represent the vector field F in the form

F=F +F, +F;
where F; = E.i + 0j + OK, etc. If we prove that Stokes’s theorem holds for F;, F,, and F;
individually, then it holds for F which is easy to prove using linearity of the curl and line and
surface integrals. Obviously, it is enough to prove theorem only for F;, proofs for F, and F, will
be analogues.
2a. First, let’s prove the theorem for a special surface that can be represented in the form z =
f(x,y). The idea of the following proof is to reduce the problem to the Green’s theorem.

Setting u = x and v = y, we have z -
r(x,y) = xi+yj+ f(x, y)k 7‘
Tt WELEITGE | i
i j k 5 3 ‘ i i :
0 1 09f/dy Xy
0F, 6f 0F, (6.14.2)
j j (curl F;) -ndA = J j —N ——N,|dxdy = — J ] e 6y dxdy

Here R, is the region on the xy plane bounded by the curve C and we can apply Green’s
theorem for this region.
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6.14. Stokes’s theorem

Now let’s calculate RHS in Eq. (6.14.1) for the vector field F;:

jﬂF d—jﬂFd—jﬂF (x,v))dx = ﬂan+anafdd
1+ dr = dx = (Y, f(x,y))dx = 3y 3z 9y xdy (6.14.3)
C C Cx* R*

Now we see that the RHSs in Eqgs. (6.14.2) and (6.14.3) are the same and it proves Stokes’s
theorem for F; in the case of a special surface represented in the form z = f(x, y).

2b. Now let’s consider a surface that can be divided into a finitely many parts, where every part
can be represented in the form z = f(x,y). Then we can apply the previous proof to every
individual part and then use the additivity of the surface and line integrals.

3. In order to proof the theorem for an arbitrary surface, we need to remember definitions of

the surface and line integrals as the sum limits:
1. We can divide the surface S into large number of small

and almost planar cells - surfaces AS; bounded by curves
AC; keeping for every i orientation of the original S and C.
2. For every subsurface, considering it as plane with
normal n;, we can apply Green's theorem in the form of
Eqg. (6.13.2):

(6.14.4) f (curl F) - n;dA = ff F-dr
AS; C

Z
3. The sum of Egs. (6.14.4) for all cells in the limit max(Al;) — 0 gives Eq. (6.14.1), since the line
integrals along all "internal" edges of cells cancel each other.
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6.14. Stokes’s theorem

Consequence 1: Criterion for the path independence of the line integral.

Reminder: Line integral is said to be path independent in a domain D if for every pair of
endpoints A and B in the domain D, the line integral has the same value for all paths in D that
begin in A and end at B. We have proved in Section 6.9 that the following statements are
equivalent:

1.

2.
3.
4

Line integral for F is path independent.
F is a gradient field.

Any circulation of F is zero.

Differential form (6.14.2) for F is exact

F-dr = F.dx + F,dy + F,dz (6.14.4)

Now let's find the criterion for exactness of (6.14.4) based on Stokes's theorem:

Theorem: Criterion of exactness and path independence.
Assume that components of F have continuous first derivatives in D. Then

)
S
fan
—
3
D
v
—
—r
o

tial form (6.14.2)

yrconr;écted, then (6.11.4) is exact
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6.14. Stokes’s theorem

Proof:

1. if (6.14.4) is exact, then F = Vf, and thus,
curl F = 0 since it holds for any gradient field.

2. Let C be a closed path in D. Since D is
simply connected, we can find S in D bounded
by C. If curl]F=0 , then, according to
Stokes's theorem, circulation of F is zero for
any closed path in D. Thus, line integral for F is
path independent and the form given by Eq.
(6.11.2) is exact (see theorems in Section 6.6).

Z

Vortex lines
Consequence 2: Helmtholtz's theorems for vortex tubes & % \7‘ \T — | —
Let's consider the vector field of vorticity w = curlyv, o 3
oW |

where v is the fluid velocity field.
Field lines of w are called the vortex lines.

Let's consider some closed curve C not coinciding with
any vortex line. The vortex tube for the curve C is the p
region bounded by all vortex lines going through points
on the curve C. C
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6.14. Stokes’s theorem

15t Helmholtz's theorem:
Circulation of flui
the vortex tube is const
Proof: Let's choose two contours C; and C, and apply
Stokes's theorem to the closed contour composed of
C;, C,, Ly, and L, (S, corresponds to the lateral
surface of the tube between C; and C5):

fv-dr=ﬂ(curlv)-ndA=0,fv-dr+ fv-dr=0,%v-dr= fv-dr=f‘=const
S, .

C C1 C, C1 C,

contour bounding

2"d Helmholtz's theorem:

If vand w are continuous fields, then a vortex tube cannot end in a fluid, it
must extend to the boundaries of the fluid or form a closed path.

Proof: According to the 1t Helmholtz's theorem

3€v-dr:ﬂ(curlv)-nd/l:F:const
S

C

If the tube ends inside the fluid, the length of the circumference of C (and surface area of §) at
the tube end becomes zero and velocity and vorticity will be infinite. Thus, v and w can not be
continuous at the end.
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6.14. Stokes’s theorem

Consequence of the 2" Helmholtz's theorem: Tornado
Vortex tubes

- I —— = —-Z.-..n‘-d-_-__-q_-b—--l.__-_._h_ﬂ
'_,_,-"' = ‘q‘\-ﬁ_
~ Iﬂ= ‘é'/ S— E_ --?r
el o _ﬂ'_,—l‘"
: iy | - -'\--H.dt i — -~ - ._.—l-l-'"-.:
SRS — XY —— =
e ; ; -
Jﬁ?‘-—*‘ =
' i = -
M — u
Tt v —
L 1 o e -
y .-ll..'-c—----——-rﬂ.-.—_—._- -
'-.E:- R lll - = -___:
< s
\ -J -"_H-"--.-.’.-"':
* -_____.-F-'"'--i_.‘i"-'r
T

= j (curl v) -ndA =T = const

ﬁ\e\‘
<
Il

» Tornado starts at the surface.
» At the surface: Minimum circumference, maximum fluid velocity

» Long lifetime, propagation to large distances
89
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6.14. Stokes’s theorem

Consequence of the 2" Helmholtz's theorem: Vortex ring and mushroom vortex

Vortex ring is the toroidal (“donut-type”) closed vortex tube

Smoke in air Water in air
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6.14. Stokes’s theorem

Consequence of the 2" Helmholtz's theorem: Vortex gun

As long as the effects of viscosity and diffusion are negligible, the fluid in a moving vortex is
carried along with it. In particular, the fluid in the core (and matter trapped by it) tends to
remain in the core as the vortex moves about. Thus vortices (unlike surface and pressure waves)
can transport mass, energy and momentum over considerable distances compared to their size,

=
“F

with surprisingly little dispersion.

See https://en.wikipedia.org/wiki/Vortex.

Momentum transfer to large distances by vortex rings is used in vortex guns.

v

m
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6.15. Gauss divergence theorem

Gauss divergence theorem gives a connection between the triple
integral of the divergence of a vector field over a closed bounded
domain and the surface integral of this vector field over the surface
of this domain.

Gauss divergence theorem:

Let T be a closed bounded region in 3D space whose boundary is a

F(r)

peecewise smooth orientable surfa Let F(r) be a vector field that
has continuous com | , partial derivatives of
compon |
(6.15.1)
wh T, or, ir
compon

~ -r / :‘_)F ;
i Fdxdy)
)J) \ d0x

T |

= ff(Fx COS & - + F
S
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6.15. Gauss divergence theorem

Proof:

The Gauss divergence theorem can be easily proved for special domain T which is simple with
respect to x, y, and z (see section 4.7). Then every triple integral of an individual term, e.g.
J0F,/0x, can be reduced by successive calculation to the double integral that finally reduces to
the surface integral of E,. See the proof in Kreyszig's textbook, pages 454-456.

Another approach is to divide T into a set of small cells and apply Eg. (6.8.6) to every cell. Then
the sum over all individual cells in the limit of infinitely small cell gives the Gauss theorem.

Application of Gauss divergence theorem
The major application of the Gauss divergence theorem in mechanics and heat transfer is the
derivation of the differential equations based on conservation laws initially formulated in the
integral form, i.e. applied to a finite volume of medium.

» Heat conduction equation
» Navier-Stokes and Euler equations in fluid mechanics
» Maxwell equations of electromagnetic field

ME 501, Mechanical Engineering Analysis, Alexey Volkov 93



6.15. Gauss divergence theorem

Example 1: Derivation of differential heat conduction equation
Conservation law for internal energy in a quiescent medium:

d
Eﬂfpcmh—j q - ndA (6.15.2)
T S

Rate of change of Flux of internal energy
internal energy in T through the boundary of T

Now we can apply the Gauss divergence theorem:

ffq-ndA=ﬂ div q dV = Ufpc—dV— ﬂ div q dV
S T T
oT
JH <pca+dlvq> dV =0 (6.15.3)
T

This equation should be valid for any T'. It is possible only if

aT+d' =0
pc—o2 ivqg =

Eqg. (6.15.3) is the heat conduction equation (energy equation in a quiescent medium).

This is the differential form of the energy conservation law (1% law of thermodynamics).
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6.15. Gauss divergence theorem

Example 2: Flow of incompressible fluid through a pipe.
A

B 5
N
Ay ey i

For incompressible fluid (density p = const), the velocity field if divergence free:

divv=20
Let’s integrate this equation over a volume T between two cross sections A; and A,:

This integral is equal to zero,
jf divvdV =0 because the pipe walls are
T

impenetrable for the fluid and
thusv -n =0

Let’s apply the Gauss theorem:

JijdivvdV=£fv.ndA=ﬂv.ndA+£fv.n{_Afzfv.ndA:O

Aq

Then the mass flux (mass flow rate) Q through any cross-section of the tube will be the same no
matter how complex the flow velocity field is:

Q=pﬂv -ndA=ﬂv -n dA = const
A1 AZ
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