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1.1. Introduction. Molecular description of gases
Subject of kinetic theory. What are we going to study?

 Kinetic theory of gases is a part of statistical physics where flows of gases are considered on
the molecular level, i.e. on the level of individual molecules, and described in terms of
changes of probabilities of various states of gas molecules in space and time based on
known laws of interaction between individual molecules.
Word “Kinetic” came from a Greek verb meaning "to move“ or “to induce a motion.”

 Rarefied gas dynamics (RGD) is often used as a synonymous of the kinetic theory of gases. In
the narrow sense, the kinetic theory focuses on the general methods of statistical
description of gas flows, while the rarefied gas dynamics focuses on solutions of practical gas
dynamics problems based on methods of kinetic theory.

 Non‐equilibrium gas dynamics combines methods of rarefied gas dynamics and continuum
gas dynamics for description of non‐equilibrium gas flows.

 Direct simulation Monte Carlo (DSMC) method is a stochastic Monte Carlo method for
simulation of dilute gas flows on the molecular level. To date, DSMC is the state‐of‐the‐art
numerical tool for the majority of applications in the kinetic theory of gases and rarefied gas
dynamics.

 Monte Carlo (MC) method is a general numerical method for a variety of mathematical
problems based on computer generation of (pseudo) random numbers and probability
theory.
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1.1. Introduction. Molecular description of gases
Historical perspective

Historically, kinetic theory of gases evolves from the molecular theory of heat, which derives,
e.g., gas laws from thermal (chaotic) motion of individual gas molecules.

The breakthrough was performed by Ludwig Boltzmann, the father
of the kinetic theory, who derived the Boltzmann kinetic equation
(Chapter 3), a equation that describes any dynamic process in gases
in terms of motion and interaction of gas molecules.
The kinetic theory, however, attracted huge attention only in the
middle of XX century as a practical tool for studying low‐density gas
flows in aerospace applications.
Applications of the approach developed by L. Boltzmann go far
beyond the kinetic theory of gases. Numerous generalizations of his
equation are used in various branches of physics. For example, the
Boltzmann transport equation (BTE) is used in the solid‐state
physics to describe transport properties (e.g., thermal conductivity)
of materials with crystalline lattices.
L. Boltzmann is famous not only for his kinetic equation. He was
one of founders of the statistical physics in general and established
a relationship between entropy ܵ and probability of states of a
physical systemܹ, ܵ ൌ ݇ log	ܹ .

Ludwig Eduard Boltzmann
(1844 –1906) 

Austrian physicist and 
philosopher
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1.1. Introduction. Molecular description of gases
Hypothesis of molecular structure of gases

Kinetic theory of gases is a part of statistical physics where flows of gases are considered on the
molecular level and described in terms of changes of probabilities of various states of gas
molecules in space and time based on known laws of interaction between individual molecules.
The starting point of the kinetic theory is the hypothesis of the molecular structure of gases:
Any gas consists of distinct individual particles – molecules. Modern kinetic theory considers not
only electrically neutral and chemically inert monatomic gases (e.g., noble gases), but also gases
composed of charged ions and electrons (plasma), molecules (molecular gases) and chemically
reactive gas mixtures, as well as granular gases composed of macroscopic solid particles.

Sizes of atoms and molecules

 Molecules consist of one or multiple atoms.
 Every atom has a nucleus that is surrounded

by a “cloud” of negatively charged electrons.
 A nucleus consist of nucleons: positively

charged protons and electrically neutral
neutrons.

 The characteristic diameter of the nucleus is
about 1 Fermi (10‐15 m), while the diameter
of the electron cloud is about 1 Angstrom (Å,
10‐10 m).

10‐15 m

10‐10 m
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1.1. Introduction. Molecular description of gases

According to quantum mechanics, atoms
do not have any "natural" size, because
electrons surrounding nuclei cannot be
considered as point masses. Every
electron (or electron pair) is
characterized by an electron orbital,
which is a mathematical function
describing the probability to find
electron in different points around the
nucleus.

 Individual atoms compose a molecule when chemical
bonds form due to the overlap of electron orbitals
belonging to different atoms.

 Therefore, the distance between neighbor atoms in a
molecule (bond length) has an order of the atomic
diameter.

 Sizes of molecules of diatomic (O2, N2) and triatomic
(CO2, water vapor) gases have the same order of
magnitude as the sizes of individual atoms.

N2 H2O

N N

1.0975 Å

Bond length
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1.1. Introduction. Molecular description of gases
In different applications, the sizes of atoms and molecules can be chosen based on different
considerations in order to match the most important (in the particular field/problem)
experimental characteristics.
In the kinetic theory, the size of atoms and molecules is usually characterized by so‐called
gaskinetic or kinetic diameters ݀, which are chosen to match values of gas viscosity predicted
by a theory to experimentally measured values.

Masses of atoms and molecules
 Mass of a molecule is the sum of masses of individual atoms composing molecules.
 Mass of an atom is a sum of masses of the nucleus and electrons.
 The mass of a nucleus is not precisely equal to the sum of masses of individual nucleons

because of relativistic effects (transformation of mass into binding energy between
nucleons).

 The rest mass of a proton is ݉= 1.67×10−27 kg = 1.007 Da
 The rest mass of an electron is ݉ ൌ9.11×10−31 kg = 5.486×10−4 Da ~ 0.001 of proton mass,

so the major mass of an atom is concentrated in its nucleus.
 Since masses of atoms and molecules are small in kg, it is convenient to measure them in

specific atomic mass units. The unified atomic mass unit (symbol u) or Dalton (symbol Da) is
the standard unit that is used for measuring masses on the atomic or molecular scale. One u
is approximately equal to the mass of one nucleon (either a proton or neutron).
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1.1. Introduction. Molecular description of gases
One unified atomic mass unit is defined as one twelfth of the mass of an unbound neutral atom
of carbon‐12 (C12) in its nuclear and electronic ground state, and has a value of

1 u = 1 Da = ݉௨= 
భమ

ଵଶ
= 1.660539040×10−27 kg.

The amu without the "unified" prefix is an obsolete unit that was based on oxygen. Many
sources still use the term "amu," but now define it in the same way as u (i.e., based on C12). In
this sense, the majority of uses of the terms "atomic mass units" and "amu" today actually refer
to the unified atomic mass unit.
The definition of u is related to the definition of a mole. Themole (symbolmol) is the amount of
substance, which contains as many elementary entities (particles) as there are atoms in 12 g of
C12. The notion of mole is used to count the number of particles, not the mass. When the mole
is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons,
other particles, or specified groups of such particles. The number of particles in 1 mole is the
universal constant that relates the number of entities to the amount of substance for any
sample and called the Avogadro constant

ܰ ൌ
ଵଶ	
భమ

ൌ	6.022140857×1023 mol−1 (entities per mole).

Themolar mass,molecular mass ormolecular weight of a species is the mass of its one mole
ߤ ൌ ݉	 ܰ

where ݉	is the mass of an individual particle. The relative atomic mass (atomic weight) has
traditionally been a relative scale, but currently it is measured in u.
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1.1. Introduction. Molecular description of gases
Let's assume that we know the molar mass of a gas ߤ in gram. What is the mass of individual
molecule	݉ of this gas in Da?

݉	 Da ൌ
	ߤ g

ܰ ݉భమ	 
12

൙ ൌ

	ߤ g
12 g 	/	݉భమሾgሿ ݉భమ	 

12
൙ ൌ 	ߤ g

Thus, the mass of a molecule in Da is numerically equal to the molar mass in gram.

Properties of major components of atmospheric air and other gases
Species

Nitrogen N2

Oxygen O2

Carbon dioxide CO2

Carbon monoxide CO

Helium He

Neon Ne

Argon Ar

Krypton Ke

Xenon Xe

Carbon vapor C

Silicon vapor Si

m kg

Volume
fraction 
in air
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1.1. Introduction. Molecular description of gases
Species of the atmospheric air



ME 591, Non‐equilibrium gas dynamics, Alexey Volkov 11

1.1. Introduction. Molecular description of gases
Length and time scale of inter‐molecular collisions

Interatomic forces are short‐range and molecules strongly interact with each other only if the
distance between them is in the order of the molecular size. Then the length scale of
intermolecular collisions, ݈, i.e. the characteristic length of a path of a molecule during
collision, is in the order of the kinetic diameter of molecules

݈	~	݀	~	1	Å.
As we will see later on, the characteristic chaotic velocity of gas molecule ܥ ൌ 3ܴܶ has the
order of the sound speed or ܴܶߛ (ܴ is the gas constant, ߛ is the isentropic index). With typical
values of ܴ ~ 300 J/K/kg and ܶ ~ 300 K , ܥ ~ 300 m/s. Then the time scale of intermolecular
collisions, ,ݐ i.e. the characteristic duration of the binary collision, is equal to

	~	ݐ
݈
ܥ 	~	10

ିଵଶ	s ൌ 1	ps

The kinetic theory studies processes is gases evolving on length and time scales that are much
larger that the length and time scale of an individual collision. For this reason, we will
systematically neglect the displacement of molecules during collision and treat any collision as
an instant change of molecular velocities taking place in a given point.

Individual interaction
between a pair of gas
molecules is called the
binary collision.

No interaction No interaction

Collision

݈
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1.1. Introduction. Molecular description of gases
Characteristic distance between molecules in gases

Number density of a gas ݊ is the number of molecules in a unite volume ሾ݊ሿ=1/m3. If we know ݊
then the number of molecules in volume ܸ of a homogeneous gas is equal to ܰ ൌ ܸ݊.
Let’s assume that a gas has number density ݊ is known and calculate (estimate) the
characteristic (average, mean) distance (spacing) between molecules ݈௦?
If a unit volume (1 m3) contains ݊ molecules, then in average one molecule occupies the volume
1/݊, which we can consider as a cube of size 1/ ݊య . Since in every such “cell” in average we
have only one molecule, then the average distance between neighbor molecules is equal to the
distance between “cell” centers, i.e.

݈௦ ൌ 1/ ݊య

ܸ ൌ 1/݊
× ×

1/ ݊య

݈௦ ൌ 1/ ݊య

݈

ܸ ൌ 1 m3
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1.1. Introduction. Molecular description of gases
Example: The number of molecules in 1 cubic meter of an ideal gas (e.g., atmospheric air) at
standard conditions (pressure 101325 Pa or 1 atm, temperature 273.15 K or 0o C) is called the
Loschmidt constant and is equal to

݊ ൌ 2.6868 · 10ଶହ		1/mଷ

Then the average distance between molecules is equal to ݈ ̅ ൌ 1/ ݊య ~3.3 nm	≫ 	݀.

Density parameter. Dilute and dense gases
Let's represent ݈௦ in the form

݈௦ ൌ
1
݊య ൌ

݀
݀ ݊య ൌ

݀
݀ଷ݊య ൌ

݀
߳య ,

where ߳ ൌ ݀ଷ݊ is called the density parameter. The density parameter characterizes the
volume occupied by molecules themselves. If every molecule is viewed as a sphere of diameter
݀, then the volume fraction of molecules (fraction of a unit volume occupied by molecules)

ߙ ൌ
ଷ݀ߨ

6 ݊~߳.

Dilute gas is a gas, where ߳ ≪ 1, i.e. the fraction of volume occupied by molecules is negligible
compared to the volume occupied by the gas. In the dilute gas, distance between molecules ݈௦ is
much larger than the size of molecules ݀ or length scale of collisions ݈, so that at every
particular time, the majority of molecules move without interaction with other molecules. We
will study the kinetic theory of only dilute gases.
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1.1. Introduction. Molecular description of gases
It will be shown later on (see Section 1.4) that in dilute gases, it is sufficient to account for only
binary collisions between molecules, while collective interactions between multiple molecules
are so infrequent that they can be completely neglected.

At standard conditions in Earth's atmosphere, 
߳  ൌ ݀ଷ݊ ൌ ሺ3.7 · 10ିଵሻଷൈ 2.6868 · 10ଶହ 	ൌ 1.4 · 10 ିଷ,

so that the atmospheric air can be considered as a dilute gas in the full range of pressures
specific for Earth's atmosphere. However, if density increase in 10‐100 time (up to pressure of
10‐100 atm at temperature 0o C), then effects of the dense gas become important.
The kinetic theory is mostly successful in description of properties of dilute gases.

Dense gas is a gas, where ߳~1, and distance between molecules ݈௦
is about the size of molecules ݀. Two major effects in dense gases:
 Smaller compressibility: The degree of compressibility is

constrained by the volume fraction of molecules.
 Collective interactions between molecules: Every individual

molecule interacts simultaneously with multiple surrounding
molecules.

These effects make the dense gases similar to liquids. The dense gas
is a "boundary" state of matter between "true" (dilute) gases and
liquids.
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1.1. Introduction. Molecular description of gases
In thermodynamics, the model of an ideal gas corresponds to the
model of dilute gas in the kinetic theory.
Any deviation from the ideal gas behavior is called the real‐gas
effect.
Real‐gas effects exhibit themselves, in particular, in deviation from
the ideal gas laws (see Section 1.3):

	ܸ ൌ ܰ݇ܶ ൌ ,ܰ  at		ݐݏ݊ܿ	 ܶ	 ൌ ݐݏ݊ܿ
(Here , ܸ, and ܰ are the pressure, volume, and number of
molecules, ݇ is the Boltzmann constant). In real gases, pressure
rises with decreasing ܸ faster than it is predicted for the ideal gas.

1 bar = 105 Pa ~ 1 atm
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1.1. Introduction. Molecular description of gases
Purpose of the kinetic theory

Kinetic theory of gases is a part of statistical physics where flows of gases are considered on the
molecular level and described in terms of changes of probabilities of various states of gas
molecules in space and time based on known laws of interaction between individual molecules.

The major purpose of the kinetic theory is to derive mathematical description of a gas flow
from a law of interaction between individual gas molecules.

 As a result, in kinetic theory, any gas property (e.g. viscosity) or parameter (e.g. pressure), is
completely defined by physical parameters of intermolecular interaction law and parameters
of motion of individual molecules (velocity, etc.).

 Kinetic theory itself, however, cannot predict the intermolecular interaction laws. These laws
must be establish by the methods of quantum mechanics or experimentally.

Input:
Law of 
interaction 
between 
molecules

Output:
Any flow 
property
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1.1. Introduction. Molecular description of gases
Chaotic motion of molecules. Major approach of the kinetic theory

Kinetic theory of gases is a part of statistical physics where flows of gases are considered on the
molecular level and described in terms of changes of probabilities of various states of gas
molecules in space and time based on known laws of interaction between individual molecules.

In the majority of practical problems, the number of individual molecules in gas flows is too
large in order to trace every individual molecule.
Example: The number of molecules in 1 cubic meter of atmospheric air) at standard conditions

݊ ൌ 2.6868 · 10ଶହ		1/mଷ.

If we want to trace every molecule in such volume, then we need to store in computer memory
6 ൈ ݊ real numbers (3 coordinates, 3 velocity component for every molecule) and to use

6 ൈ ݊ ൈ 8		2ଷ	~	10ଵ	GByte.
of computer memory. This is an unviable approach even in the very long run!

Too many
molecules
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1.1. Introduction. Molecular description of gases
The major foundation of the kinetic theory is the well‐established experimental fact that
individual molecules in gases move chaotically, i.e. individual molecules in any small volume of a
gas flow have vectors of velocity that are different from each other in magnitude and direction.

Then one can use the methods of mathematical theory of probability and statistics in order to
study distributions of chaotic velocities of gas molecules without considering motion of all
molecules composing a gas flow.
The major approach of the kinetic theory is to consider coordinates, velocities (and, may be other
parameters describing internal motion of individual atoms within molecules) as random
variables. Such statistical approach allows one to study systems composed of extremely large
number of gas molecules ܰ without explicit restrictions on ܰ.

Chaotic motion of molecules is also called
thermal motion since, as will see later on,
temperature is a measure of magnitude
of chaotic velocities of individual
molecules
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1.1. Introduction. Molecular description of gases

Soot nanocluster Atmosphere of Io

3640 km

As a result,
 Kinetic theory has no intrinsic restrictions on the number of molecules in the flow and flow

length scale.
 It can be used for problem from nano‐ to planetary scale.
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1.1. Introduction. Molecular description of gases
Specific goals of the kinetic theory

 To provide a kinetic foundation of the continuum gas dynamics, i.e. to derive gas dynamics
equations from equations of motion of individual molecules

 To generalize continuum gas dynamics, i.e. to develop approaches for mathematical
descriptions of gas flows in conditions when continuum gas dynamics is not applicable

Examples of conditions when the kinetic description of gas flows in required:
 Low‐density flow

 Small‐scale flow

 Fast, non‐equilibrium flows
and flows with high
gradients of gas parameters
(evaporation, shock waves)
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1.1. Introduction. Molecular description of gases
Applications of the kinetic theory of gases and RGD

 Aerospace applications: Flows in upper atmosphere and in vacuum

 Vacuum devices, microchannels, microparticles and clusters

Satellites and spacecrafts
on LEO and in deep space

Re‐entry vehicles in
upper atmosphere

Nozzles and jets
in space environment

Microchannels Microparticles
and clusters

Soot 
clusters

Si waferHD

Microelectronic devices 
and MEMS

Vacuum pumps, 
vacuum chambers
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1.1. Introduction. Molecular description of gases
Applications of the kinetic theory of gases and RGD

 Fast, non‐equilibrium gas flows (laser ablation, evaporation, vapor deposition)

 Natural phenomena in planetary science and astrophysics
Dynamics of 
upper 
planetary 
atmospheres:
Solar system, 
exoplanets

Global 
atmospheric 
evolution of 
distant bodies 
in the solar 
systems (Io, 
Enceladus, 
Pluto, etc.)

HD189733b

Io Comet 67/P

Atmospheres of comets
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1.2. Molecular quantities and macroscopic gas parameters
 Macroscopic gas parameters in continuum mechanics
 Molecular quantities 
 Macroscopic gas parameters as volume‐averaged molecular quantities
 Macroscopic gas velocity and velocity of chaotic motion of molecules
 Total and internal energies
 Restrictions of the continuity hypothesis
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1.2. Molecular quantities and macroscopic gas parameters
In Section 1.1 we discussed two major specific goals of the kinetic theory:
 To provide a kinetic foundation of the continuum gas dynamics, i.e. to derive gas dynamics

equations from equations of motion of individual molecules
 To generalize continuum gas dynamics, i.e. to develop approaches for mathematical

descriptions of gas flows in conditions when continuum gas dynamics is not applicable
In order to achieve these goals we, first of all, need to establish a relationship between physical
quantities assigned to individual gas molecules and macroscopic gas parameters. Such
parameters should have the same meaning as gas parameters in continuum mechanics.

Macroscopic gas parameters in continuum gas dynamics
In continuum gas dynamics, the molecular structure of a gas is neglected. The gas is viewed as a
matter that is continuously distributed and fills the entire region of space it occupies. Various
physical quantities associated with the this matter (continuum) are characterized by continuous
fields of densities of mass, momentum, energy, etc.

ܸ݀

ܸ

ܚ

,ܚሺܧ ,ܚ ሻ, density of the energy in pointݐ ሾܧሿ = J/m3;

ܧ݀ ൌ ܧ ,ܚ ݐ ܸ݀, gas energy in the infinitesimal volume around 
point ܚ;
The gas energy ܧ in a finite volume ܸ is equal to

ܧ ݐ ൌ න ܧ ,ܚ ݐ ܸ݀


.
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1.2. Molecular quantities and macroscopic gas parameters
From the point of view of molecular structure of gases, any gas is a system of molecules. Then
any macroscopic gas quantity is a function of corresponding molecular quantities associated
with individual gas molecules. For example, the total energy of the gas in volume ܸ is just a sum
of energies of individual molecules.

Molecular quantities 
Let's denote different molecules by the subscript ݅ (݅ ൌ 1,2, …) and assume that every molecule
is a point mass particle of mass݉. The state of molecule ݅ at time ݐ is completely defined by its
position vector ܚ and velocity vector .ܞ We can also introduce a number of other physical
quantities that are associated with molecule ݅.

ܚ

ܞ

ݔ

ݕ

ݖ ܱ ܓܑ

ܒ

ܚ ൌ ܑݔ  ܒݕ  ܓݖ
ܞ ൌ ௫ܑݒ  ܒ௬ݒ  ܓ௭ݒ

1, quantity that serves to count the number of molecules;
݉, molecule mass;
ܘ ൌ ݉ܞ, linear momentum of molecule;

ܧ ൌ ݉ܞଶ/2, translational (kinetic) energy of molecule;
ۺ ൌ ݉ሺܚ ൈ ;ሻ, angular momentum of moleculeܞ
Any such physical quantity Φ ൌ Φ ,ܚ ,ܞ ݐ 	associated with an
individual gas molecule is called themolecular quantity.
One can introduce many different molecular quantities, but the
most important of them correspond to physical quantities that
conserve their values in a closed system of molecules, i.e. a
system, where molecules are not affected by any external force.

݉
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1.2. Molecular quantities and macroscopic gas parameters
Representative elementary volume and continuity hypothesis

Macroscopic gas parameters (macroparameters) can be introduced as averaged values of
corresponding individual molecular quantities. Their definition is based on the hypothesis of
existence of a representative elementary volume (R.E.V.).
Representative elementary volume	Δܸ around some point in the flow is such a volume that
 Linear size of this volume Δܮ is negligibly small compared to the flow length scale ,ܮ Δܮ ≪

so	,ܮ that we can neglect inhomogeneity of the gas flow inside Δܸ and mathematically
consider Δܸ as an infinitesimal volume.

 This volume contains very large number of molecules, Δܰ ≫ 1, so that the total value of any
physical quantity for the whole system of molecules inside this volume exhibit negligible
fluctuations because of the chaotic motion of molecules.

Δܸ
ܚ

If such R.E.V. can be introduced in any point ܚ of the flow field,
then we say that the hypothesis of existence of R.E.V. is
satisfied. It is also called the continuity hypothesis, since
continuum mechanics is valid only if R.E.V. exist everywhere.

ܮ
Δܸ

ܮ∆
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1.2. Molecular quantities and macroscopic gas parameters

(1.2.1)

(1.2.2)

(1.2.3)

ሾΦഥሿ ൌ ሾΦሿ

Macroscopic gas properties as volume‐averaged molecular quantities
If R.E.V. exists in point ,ܚ then we can introduce the macroscopic gas parameter Φഥ of physical
quantity Φ in this point as a volume‐averaged value of corresponding molecular quantities
Φ ,ܚ ,ܞ ݐ for all molecules in R.E.V

Φഥ ,ܚ ݐ ൌ
1
ΔܰΦ ,ܚ ,ܞ ݐ

ே

ୀଵ

IfΦ ൌ 1, then Φഥ ൌ 1ത;
IfΦ ൌ ݉, then Φഥ ൌ ݉ is the average mass of molecules;
IfΦ ൌ ݉ܞ, then Φഥ ൌ ݉ܞ is the average linear momentum of molecules;
IfΦ ൌ ݉ܞଶ/2, then Φഥ ൌ ݉ܞଶ/2 is the average kinetic energy of molecules.

If the continuity hypothesis is satisfied then Φഥ must have the following properties:
1.Φഥ does not depend on the choice of the particular shape and size of R.E.V.
2. If we introduce a new molecular quantity,Ψ ൌ Φ ,ܚ ݐ then

Ψ ൌ Φ ൌ Φ.
3. The averaging is a linear operation in a sense that, if we introduce a molecular quantity in the
form of a linear combination, ܽΦ  ܾΨ, of quantifiesΦ andΨ, then (ܽ, ܾ ൌ (ݐݏ݊ܿ

ܽΦ  ܾΨ ൌ ܽΦഥ  ܾΨഥ.
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1.2. Molecular quantities and macroscopic gas parameters

ሾΦሿ ൌ
ሾΦሿ 
݉ଷ

ሾΦெሿ ൌ
ሾΦሿ 
݇݃

(1.2.4)

(1.2.5)

(1.2.6)

In addition to Φഥ , we can define the density of physical quantity per unit volume

Φ ,ܚ ݐ ൌ
1
ΔܸΦ ,ܚ ,ܞ ݐ ൌ

Δܰ
Δܸ Φ

ഥ ,ܚ ݐ
ே

ୀଵ

,

and specific gas macroscopic parameter, i.e. physical quantity per unit mass

Φெ ,ܚ ݐ ൌ
1
ΔܯΦ ,ܚ ,ܞ ݐ ൌ

Δܸ
ΔܯΦ ,ܚ ݐ

ே

ୀଵ

,

where

Δܯ	 ൌ݉

ே

ୀଵ
is the total mass of molecules in R.E.V.
IfΦ ൌ 1, then Φ ൌ ݊ is the gas number density (number of molecules in a unit volume);
IfΦ ൌ ݉, then Φ ൌ ߩ is the gasmass density (mass of molecules in a unit volume);
If Φ ൌ ݉ܞଶ/2, then Φெ ൌ ݁௧௧ is the gas specific translational energy (total kinetic energy of
molecules per unit mass).
Since ݊ ൌ Δܰ/Δܸ and ߩ ൌ Δܯ/Δܸ, there is a simple relationship between three types of
macroscopic parameters (per unit molecule, per unit volume, and per unit mass):

Φ ,ܚ ݐ ൌ ݊Φഥ ,ܚ ݐ ൌ Φெߩ ,ܚ ݐ .
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1.2. Molecular quantities and macroscopic gas parameters
Macroscopic gas velocity and velocity of chaotic motion of molecules

Macroscopic gas velocity (bulk velocity) ܝ is the center‐of‐mass velocity of molecules in R.E.V.

ܝ ,ܚ ݐ ൌ
1
Δܯ݉ܞ

ே

ୀଵ

ൌ
݉ܞ 
ߩ ൌ

݉ܞ
݉

.

Gas velocity can be also viewed as the gas specific linear momentum.
If all molecules have the same mass, then ܝ is the average velocity of molecules in R.E.V.:

ܝ ,ܚ ݐ ൌ
1

݉Δܰ݉ܞ

ே

ୀଵ

ൌ
ܞ 
݊ ൌ ഥܞ .

Velocity of	܋ chaotic motion of molecule ݅ is the velocity of the molecule with respect to
center‐of mass velocity or gas velocity in the point where the molecule is located:

܋ ൌ ܞ െ ܝ ,ܚ ݐ .
The chaotic velocity is defined by ,ܞ ,ܚ and .ݐ
The mean square velocity ,ܥ where ଶܥ ൌ ሺ܋ሻଶ	, is called the gas thermal velocity and used as a
numerical measure of chaotic motion. For a gas of identical molecules (݉ ൌ ݉ ൌ ,(ݐݏ݊ܿ

ଶܥ ൌ ሺܞ െ ሻଶൌܝ ሺܞሻଶെ2ܞ · ܝ  ଶܝ ൌ ሺܞሻଶെ2ܞ · ഥܞ  ഥଶܞ ൌ ሺܞሻଶെ ഥܞ2 · നܞ  നܞ ଶ

or
ଶܥ ൌ ሺܞሻଶെ .ଶܝ

Here we use properties given by Eqs. (1.2.2) and (1.2.3).

(1.2.7)

(1.2.8)

(1.2.9)

(1.2.10)
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(1.2.11)

(1.2.12)

(1.2.13)

(1.2.14)

Total and internal energies
The total translational energy of a gas is the sum of kinetic energies of its molecules. The
specific total translational energy ݁௧௧ and density of total translational energy ௧௧ܧ are

݁௧௧ ,ܚ ݐ ൌ
1
Δܯ

݉ܞଶ

2

ே

ୀଵ

, 		 ௧௧ܧ ,ܚ ݐ ൌ
1
Δܸ

݉ܞଶ

2

ே

ୀଵ

ൌ .௧௧݁ߩ

The internal or thermal energy of a monatomic gas is the kinetic energy of chaotic or thermal
motion of molecules. The specific internal energy ݁ is the internal energy of a unit mass and
density of the internal energy ܧ is the internal energy of unit volume:

݁ ,ܚ ݐ ൌ
1
Δܯ

݉ሺܞ െ ሻଶܝ

2

ே

ୀଵ

, ܧ		 ,ܚ ݐ ൌ
1
Δܸ

݉ሺܞ െ ሻଶܝ

2

ே

ୀଵ

ൌ .݁ߩ

In the case of molecules of the identical mass,݉ ൌ ݉ ൌ :ݐݏ݊ܿ

																݁ ,ܚ ݐ ൌ
1

݉Δܰ
݉
2 

ሺܞ െ ሻଶܝ

2 ൌ
ே

ୀଵ

ሺܞ െ ሻଶܝ

2 ൌ
ଶܥ

2 , ܧ				 ,ܚ ݐ ൌ ݉݊݁ ൌ ݊
ଶܥ݉

2 ,

and, if we use Eq. (1.2.10),

݁௧௧ ൌ ݁ 
ଶܝ

2 , ௧௧ܧ ൌ ܧ 
ଶܝߩ

2 .

Thus, total specific energy is the sum of the specific internal energy and kinetic energy ଶ/2ܝ of
the gas macroscopic motion per unit mass.
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1.2. Molecular quantities and macroscopic gas parameters
Restrictions of the continuity hypothesis

The definition of macroparameters as volume‐averaged quantities has two major drawbacks:

Δܸ

ܮ Δܸ

ܮ∆

First, it can be applied only if the continuity hypothesis is satisfied.
Let's imagine what can happen to  Φഥ when we vary the size of 
averaging volume Δܮ. Two major cases are possible:

Case 1: R.V.E. exists

log	ሺΔܮሻ

Φഥ

Size of the volume is too small,
number of molecules in ∆ܸ	is small,

fluctuations are significant

Size of the volume is too large 
compared to the flow length scale 
 cannot be	gas state inside ∆ܸ ,ܮ
considered as homogeneous

݈௦

Range of R.E.V. sizes

ܮ
Case 2: R.V.E. does not exist

logሺΔܮሻ

Φഥ

݈௦ ܮ

Transition from case 1 to case 2 occurs
if we gradually decrease the number
density of molecules (and increase ݈௦),
i.e. if we consider more and more
rarefied gas flows. Thus, the continuity
hypothesis and our definition of ഥߔ fail in
rarefied gas flows, which is the major
subject of the kinetic theory.
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1.2. Molecular quantities and macroscopic gas parameters
Second, the definition of Φഥ in the form of Eq. (1.2.1) can be used for real calculations only if we
know position vectors ,ܚ velocities ,ܞ and quantities Φ ,ܚ ,ܞ ݐ for all molecules in the gas
flow.
The definition of macroscopic gas parameters given in this section is well‐suited, e.g., for
atomistic (molecular dynamics) simulations of matter (including gases), where positions and
velocities of all atoms are explicitly tracked by solving equation of motions for every atom in the
system.
In applications of the kinetic theory, the number of gas molecules is so huge that we cannot
trace all of them. Later on, an alternative, kinetic (statistical) definition of macroscopic gas
parameters will be given (Section 3.2). Eq. (1.3.1), however, will be in agreement with that new
definition in the case when the continuity hypothesis is satisfied.
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1.3. Gas laws
 Ideal gas equation of state
 Equation of state of calorically perfect gas
 Assumptions of elementary kinetic theory
 Kinetic foundation of the ideal gas equation of state
 Kinetic foundation of the equation of state of a calorically perfect gas
 Kinetic definition of gas temperature
 Brownian motion
 Equipartition of energy



Although initially Eq. (1.3.1) was established for particular processes like
compression of a fixed mass of a gas ܯ) ൌ (ݐݏ݊ܿ in a cylinder, it was found that this
equation holds for any process, where pressure and temperature vary within
“reasonable” ranges. Therefore, this equation, often re‐written in the form

 ൌ ,ܴܶߩ
is called the gas equation of state (EOS) or Clapeyron equation. A gas, whose
thermodynamic parameters satisfy the Clapeyron equation, is called the ideal gas.
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1.3. Gas laws
Ideal gas equation of state

Physicists of XVIII century (Boyle, Charles, Gay‐Lussac, Avogadro, etc) experimentally established
a number of gas laws, i.e. relationships between basic thermodynamic gas parameters such as
mass ܯ , volume ܸ , number density ݊ , mass density ߩ , pressure  , and absolute
thermodynamic temperature ܶ.	Many of these laws can be reduced to a single equation


ܶߩ ൌ ܴ ൌ

തܴ
ߤ

ൌ ݐݏ݊ܿ

where gas‐specific constant ܴ is called the gas constant, തܴ ൌ 8.3144598 J/mol/K is the
universal gas constant, and ߤ is the molar mass. All parameters in the left‐hand side of Eq.
(1.3.1) can be directly measured: ߩ ൌ ܸ/ܯ ܯ) is the mass of the gas, ܸ is the occupied volume)
with scale,  with manometer, and ܶ with thermometer. Then the gas constant ܴ can be
determined from experiment, [ܴ]=J/kg/K. The molar mass can be established without knowing
molecule mass ݉ and Avogadro constant in chemistry by measuring the relative masses of
species that participate in chemical reactions. Then one can find value of തܴ.

(1.3.1)

(1.3.2)
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1.3. Gas laws
Equation of state of calorically perfect gas

Another series of experiments resulted in the relationship between the specific internal energy
ݑ of the gas and its temperature ܶ

	
݁
ܶ ൌ ܿ ൌ .ݐݏ݊ܿ

where the gas‐specific constant ܿ is called the gas specific heat at fixed volume, [ܿ]=J/kg/K.
Absolute value of ݁ in Eq. (1.3.3) can not be directly measured, but the change of ݑ in, e.g.,
adiabatic process (݀ܳ ൌ 0) can be measured through the work performed by the gas using the
first law of thermodynamics,

݀ܳ ൌ ݀݁  ܸ݀ ൌ 0	,	
i.e. ݀݁ ൌ 	െܸ݀ and

ܿ ൌ
݀݁
݀ܶ ൌ െ

ܸ݀
݀ܶ .

In the right‐hand side of the last equation, all quantities ,ܸ݀	,) and ݀ܶ) can be directly
measured experimentally. Similarly to Eq. (1.3.1), it was shown that Eq. (1.3.3) holds for any
process, where pressure and temperature vary within “reasonable” ranges. Therefore, this
equation, often re‐written in the form

݁ ൌ ܿܶ,
is called the gas equation of state. The gas, whose thermodynamic parameters satisfy Eq.
(1.3.4), is called calorically perfect.

(1.3.3)

(1.3.4)
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1.3. Gas laws
The model of ideal and thermodynamically perfect gas is the model of gas, whose
thermodynamic parameters satisfy two equations of state, (1.3.2) and (1.3.4). It is quite often,
e.g., in gas dynamics, that the ideal and thermodynamically perfect gas is shortly called the ideal
gas. For example, the closed system of Euler equations is usually obtained in gas dynamics
specifically for the gas satisfying both Eqs. (1.3.2) and (1.3.4).
Equations of state are used in thermodynamics as empirical, i.e. established in experiments. Our
goal is to show that these equations can be derived theoretically based on the assumptions of
the molecular structure of a gas and chaotic motion of gas molecules. In addition, we will
establish a relationship between temperature and thermal velocity of individual molecules.

Assumptions of elementary kinetic theory
For derivations, we will use only an elementary approach based on the following assumptions:
1. We will consider a volume (vessel) ܸ occupied by a dilute

homogeneous gas, where there is no gradients of
macroscopic parameters and macroscopic parameters
are the same in any point of volume ܸ. For simplicity we
consider a vessel in the form a cube of size ,ܮ ܸ	 ൌ
containing	ଷܮ ܰ molecules at number density ݊ ൌ ܰ/ܸ.

2. Every gas molecule is a “billiard” ball of diameter ݀
without internal structure. Position of a molecule can be
described by 3 Cartesian coordinates, i.e. a molecule has
3 translational degrees of freedom.



3. Gas in volume ܸ is kept under fixed external conditions (e.g., fixed temperature of the vessel
wall) for very long time. It is known from thermodynamics that in this case the gas reaches
an equilibrium state, which does not change unless external conditions change (e.g., change
of the wall temperature or volume). We consider only the equilibrium state.

4. We will assume that the vessel is at rest, i.e. macroscopic gas velocity is zero, and, thus,
chaotic velocity of every molecule ܋ is equal to its velocity in an inertial framework, ܋ ൌ .ܞ

5. We will not account for the real distribution of chaotic velocities of individual molecules. We
will assume that that all molecules moves with the same averaged thermal velocity |܋| ൌ ܥ
and ܰ/6 molecules at every time move toward any of 6 faces of cubic volume ܸ.

The theory that can be derived based on these assumptions is called elementary kinetic theory.
Kinetic foundation of the ideal gas equation of state
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1.3. Gas laws

Let ܨ be the force exerted on any face of vessel along normal to the
face. Pressure  is force exerted on a unit area, i.e.  ൌ ܵ/ܨ ൌ .ଶܮ/ܨ
Force ܨ appeares because individual molecules rebound from the
face and exchange the momentum with the vessel. If gas and vessel
are in equilibrium, then absolute value of average velocity of a
molecule before and after the impact is the same. The only result of
interaction is the change of velocity direction to the opposite one. If
before the impact the molecule moves with momentum ܥ݉ towards
a wall, then after the “reflection”, the molecule has momentum .ܥ݉–
During the impact the molecule transfers momentum ଵ∆ to the wall.

ଵ∆ ൌ ܥ݉ െ െ݉ܥ
ൌ ܥ2݉

ݔ

௫ ൌ ܥ݉

௫′ ൌ െ݉ܥ



According to Newton’s second law of motion, force is the rate of change of momentum, ܨ ൌ
,ݐ∆/ܲ∆	 and the pressure is the equal to ߩ) ൌ ݉݊)

 ൌ
∆ܲ
ଶܮݐ∆ ൌ ߩ

ଶܥ

3
Let’s compare Eq. (1.3.5) with the ideal gas EOS: These equations coincide if we assume that the
thermodynamic temperature is defined by the average chaotic velocity of molecules as

ܴܶ ൌ
ଶܥ

3 				or									
ܴ݉ܶ
2 ൌ

ଶ/2ܥ݉
3
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1.3. Gas laws
Now let's consider the forces ܨ exerted on the face .ܦܥܤܣ
In order to find ܨ let’s consider some interval of time ݐ∆ and
determine how many molecules ∆ܰ interact with the face ܦܥܤܣ
during this time. Such molecules must be located in the layer
′ܦ′ܥ′ܤ′ܣܦܥܤܣ of thickness ݐ∆ܥ and volume ∆ܸ ൌ ଶܮݐ∆ܥ and
move towards the wall, otherwise they will not reach the wall
during ݐ∆ . Then ∆ܰ ൌ ሺ1/6ሻ݊∆ܸ.
The total momentum transferred to the wall during ݐ∆ is equal to

∆ܲ ൌ ∆ܰ	 · ଵ∆	 ൌ
1
ܮݐ∆ܥ6݊

ଶ · ܥ2݉ ൌ
1
ܥ3݊݉

ଶ∆ܮݐଶ

(1.3.5)

(1.3.6)
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1.3. Gas laws

Kinetic foundation of the equation of state of a calorically perfect gas
If gas is dilute, then collisions between molecules are instant events and the number of
interacting molecules an any particular time is negligibly small, so we can neglect contribution of
the potential energy of interaction between gas molecules to the total gas energy. Then the total
internal energy of gas in volume ܸ is the sum of kinetic energies of individual molecules݉ܥଶ/2.
Then the specific internal energy (per unit mass) is equal to

݁ ൌ
ܰሺ݉ܥଶ/2ሻ

݉ܰ ൌ
ଶܥ

2 .

Eq. (1.3.7) coincides with the EOS of calorically perfect gas (1.3.4) if

ܿܶ ൌ
ଶܥ

2 					or							
݉ܿܶ
3 ൌ

ଶ/2ܥ݉
3 .

Eqs. (1.3.6) and (1.3.8) result in

ܿ ൌ
3
2ܴ,

equation which is known from thermodynamics.

Thus, we see that both EOSs can be explained from the point of view of molecular structure of
gases if we assume that the gas temperature is a measure of averaged kinetic energy of chaotic
motion of individual gas molecules.

(1.3.8)

(1.3.7)
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1.3. Gas laws

(1.3.11)

(1.3.9)

(1.3.10)

Kinetic definition of gas temperature
In order to make the final step towards the kinetic definition of temperature let’s use the
relationship between the gas constant and universal gas constant given by Eq. (1.3.1): ܴ ൌ
തܴ/ߤ. Then Eq. (1.3.6) reduces to

ሺ തܴ/ ܰሻܶ
2 ൌ

ଶ/2ܥ݉
3 .

The new universal constant

݇ ൌ
തܴ

ܰ
ൌ 1.38064852 × 10−23  

J
K

is called the Boltzmann constant. With the Boltzmann constant, Eq. (1.3.9) can be re‐written as

݇ܶ
2 ൌ

1
3
ଶܥ݉

2 ,

i.e. absolute thermodynamic temperature is such a measure of chaotic motion of molecules that
݇ܶ/2 is equal to the average energy of chaotic motion of a single molecule per one degree of
freedom. This is the kinetic definition of temperature.

This definition is very general: In statistical physics, for any system in the equilibrium state,
temperature is defined as such parameter that ݇ܶ/2 is equal to the average energy of chaotic
motion of a single molecule per one degree of freedom.
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1.3. Gas laws

(1.3.11)

(1.3.12)

(1.3.13)

With the Boltzmann constant, the gas constant can be defined as

ܴ ൌ
തܴ
ߤ

ൌ
݇ ܰ
݉ ܰ

ൌ
݇
݉ ,

and the EOSs of ideal and calorically perfect gas can be re‐written as follows

 ൌ ܴܶߩ ൌ ݉݊
݇
݉ ܶ						or										 ൌ ݊݇ܶ,

݁ ൌ
3
2ܴܶ ൌ

3
2
݇
݉ ܶ,

or, for the internal gas energy per molecule ݁ଵ ൌ ݉݁,

݁ଵ ൌ
3
2 ݇ܶ.

Thus, the heat capacity of gas per unit molecule at constant volume is equal to ሺ3/2ሻ݇. It
means that ݇/2 is equal to the heat capacity of the gas per one degree of freedom of gas
molecule.

The Boltzmann constant can be also considered as a scaling coefficient appeared in Eq. (1.3.11)
because we used independent units to measure energy and temperature, that is why ሾ݇] = J/K.

The Boltzmann constant establishes a proportionality between energy and temperature.
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1.3. Gas laws

(1.3.14)

Equipartition of energy

In statistical physics, an equipartition theorem is formulated and proven. This theorem implies
that, for any physical system in the equilibrium state, the energy is equally distributed between
all degrees of freedom in this system, so that ݇ܶ/2 is equal to the average energy of any
degree of freedom. Then, Eq. (1.3.11) for an equilibrium system with energy ܧ and ܰ degrees of
freedom can be re‐written as follows:

݇ܶ
2 ൌ

ܧ
ܰ .

If we consider a gas at equilibrium in a unit volume with number density ݊, then ܰ ൌ 3݊ (every
molecule has 3 translational degrees of freedom) and ܧ ൌ ݊ሺ݉ܥଶ/2ሻ, so that Eq. (1.3.14)
reduces to Eq. (1.3.11).
The equipartition theorem highlights the fact that, in both thermodynamics and statistical
physics, temperature is a quantity that characterizes, strictly speaking, only equilibrium states. In
non‐equilibrium states, the temperature ܶ can be introduced formally using Eqs. (1.3.11) or
(1.3.14) as a measure of the internal energy, but different degrees of freedom have different
average energies, and these energies are not characterized by ܶ.
Differences between energies of individual degrees of freedom, e.g., corresponding to the
translational motion of molecules in ,ݔ ,ݕ and ݖ directions, can be used as measures of degree
of non‐equilibrium in gas flows (see Section 6.6).



Brownian motion
The Boltzmann constant was first introduced by Max Plank in 1900‐1901. He also predicted the
value of ݇ using the law of the blackbody radiation. It was interesting, however, to measure
݇ directly based on the chaotic motion of molecules. The Boltzmann constant can be easily
defined only if we know ܰ, but experimental determination of ܰ is also very difficult, since we
need to either count huge number of molecules or accurately define the molecule mass. For the
first time, French physicist Jean Perrin measured ݇ in 1908 by observing motion of Brownian
particles and comparing observations with predictions of the kinetic theory.

See experimental video: Brownian motion of particles in water
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1.3. Gas laws

Brownian motion is the chaotic (random) motion of small dust
particles in gases and liquids. It was first observed by English
botanist Robert Brown in 1827. The explanation of the Brownian
motion is in the chaotic motion of surrounding molecules of liquid or
gas. Variation of velocity of a Brownian particles is induced by
impacts of individual gas molecules. Thus, Brownian motion provided
experimental evidences of two major hypothesis of kinetic theory:
molecular structure and chaotic motion of molecules.

The kinetic theory of the Brownian motion was developed by Albert Einstein (1905) and Marian
Smoluchowski (1906). It predicts that the average displacement of a Brownian particle depends
on its mass, gas temperature, and the Boltzmann constant. Jean Perrin experimentally
confirmed this theory and found value of ݇ . It was possible because the mass of a Brownian
particle is much larger than the mass of individual molecule and could be directly measured.
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1.4. Collision frequency. Free molecular, transitional, and continuum flow regimes

 Homogeneous random distribution of molecules in space (in a volume)
 Probabilities of collisions with participation of various number of particles
 Collision frequency and mean free time
 Equilibrium and relaxation
 Knudsen number. Free molecular, transitional, and continuum flow regimes
 Local Knudsen number
 Local equilibrium. Summary on the length scales in dilute and dense gases
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1.4. Collision frequency. Free molecular, transitional, and continuum flow regimes

The goal of the present section is to introduce major quantities characterizing the rate of
collisions between molecules and to make conclusions on the effect of intermolecular collisions
under various flow conditions. The first question is: Do we need to consider collective
interactions between molecules or it is sufficient to take into account only binary collisions? To
answer this question we need to study random distributions of molecules in space.

Homogeneous random distribution of molecules in space (in a volume)

is called the probability to find our green molecule inside ∆ܸ. Any probability ܲ of a random
event is relative frequency of occurrence of this even among all possible outcomes (0  ܲ  1).
We say that molecules are distributed inside ܸ with equal probability (or homogeneously) if, for
any molecule,

ଵܲ ∆ܸ ൌ
∆ܸ
ܸ .

Let's consider a volume ܸ filled with ܰ gas molecules at number
density ݊ ൌ ܰ/ܸ, choose a subvolume of size ∆ܸ inside ܸ, and
fix one (green) molecule. Since molecules move chaotically, we
can observe the green molecule sometimes inside ∆ܸ ,
sometimes outside. Let's assume that we determine position of
our molecule with respect to ∆ܸ ܭ times ܭ) ≫ 1) and found
that it was inside ܭ ∆ܸ times. Then the quantity

ଵܲ ൌ ଵܲሺ∆ܸሻ ൌ lim
→ஶ

ܭ ∆ܸ
ܭ

ܸ

∆ܸ

(1.4.1)
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1.4. Collision frequency. Free molecular, transitional, and continuum flow regimes

Every time when we perform observations we can find more than one molecule inside ∆ܸ. Let's
calculate the probability ܲሺ∆ܸሻ to find in ∆ܸ (during one observation) ݇ molecules assuming
what positions of individual molecules are independent from each other (i.e. presence or
absence of one molecule in ∆ܸ does not affect presence or absence of any other molecule
there). For this purpose we can use the solution of statistical problem called the Bernoulli trial.
In the Bernoulli trial (see Section 1.8), we perform ܰ independent measurements
(determination of positions of ܰ particles with respect to ∆ܸ). Every measurement has only two
outcomes: Success (particle inside ∆ܸ with probability ଵܲ) or failure (particle outside ∆ܸ with
probability 1 െ ଵܲ). The probability of ݇ successes in a series of ܰ measurements is equal to

ܲ ൌ ܲ ∆ܸ ൌ
ܰ!

݇! ܰ െ ݇ ! Pଵ
 1 െ ଵܲ

ேି.

Probabilities of collisions with participation of various number of particles

(1.4.2)

Binary collision is a process of interaction between two molecules.
Triple collision is a process of interaction between three molecules.
Let's compare probabilities of collisions with different number of
molecules.
If ݇ particles interact with each other, then they should be close to
each other, not farther than the characteristic length scale of
collisions ݈ ൌ ݀. Then a collision with participation of ݇ particles
occurs if we can find ݇ particles in a sphere of radius ݀ and volume
∆ܸ ൌ 4π݀ଷ/3. Probability of such event is given by Eq. (1.4.2).

ܸ
∆ܸ ൌ 4π݀ଷ/3
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(1.4.3)

Now let's compare probabilities of collisions between ݇  1 and ݇ molecules using Eq. (1.4.2):

ܲାଵ

ܲ
ൌ
ܰ െ ݇
݇  1

ଵܲ
1 െ ଵܲ

ൌ
ܰ െ ݇
݇  1

ଵܲ
1 െ ଵܲ

ൌ
ܰ െ ݇
݇  1

∆ܸ
ܸ െ ∆ܸ .

This equation can be simplified in the case when ∆ܸ ≪ ܸ and ݇ ≪ ܰ. Using additionally Eq.
(1.4.1):

ܲାଵ

ܲ
ൌ

݊∆ܸ
݇  1 ൌ

3/ߨ4
݇  1݊݀

ଷ ൌ
3/ߨ4
݇  1 ߳.

Thus, we see that
ܲାଵ

ܲ
~߳.

In the dilute gas, the density parameter is small, ߳ ≪ 1, and it is sufficient to account only for
binary collisions between molecules.
In the dense gas, interactions between multiple particles (collective interactions) must be taken
into account.

In the kinetic theory of dilute gases, only binary collisions between molecules are accounted for.
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Collision frequency and mean free path

Mesh of cells

Collision frequency of a molecule ݖ is the mean
number of binary collisions which an individual
molecule participates in per unit time.
In order to find ,ݖ let’s first calculate the mean
number of collisions ݖ∆ of a green molecule during
time .ݐ∆ During this time the molecule will make a
path ݐ∆ܥ . Any other orange molecule can
participate in the collision with the selected
molecule only if the center of the orange molecule
is within the collisional cylinder of diameter ݀ and
height .ݐ∆ܥ
Area of cross section ்ߪ ൌ ଶ݀ߨ of the collisional
cylinder is called the total collision cross section.
The volume of collision cylinder is ∆ܸ ൌ .ݐ∆ܥ்ߪ

܋| െ |܋

ݐ∆ܥ

்ߪ

݀

Then the number of collisions ݖ∆ is equal to the average number of orange molecules in the
collision cylinder, ݖ∆ ൌ ݊∆ܸ ൌ ,ݐ∆ܥ்ߪ݊ and the collision frequency for a molecule is equal to

ݖ ൌ
ݖ∆
ݐ∆ ൎ .ܥ்݊ߪ

Collision density or collision frequency per unit volume ܼ is the mean number of binary
collisions in a unit volume per unit time. It can be easily found based on :ݖ Every molecule per

Collision
cylinder

(1.4.4)
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unit time participates in ݖ collisions and we totally have ݊ molecules in a unit volume. Then

ܼ ൌ
1
ݖ2݊ ൎ

1
்݊ߪ2

ଶܥ,
where coefficient ሺ1/2ሻ appeared because two molecules participate in every binary collision.
The mean free time ߬ of a molecule is the mean interval of time between two sequential
collisions of a given molecule with other molecules:

߬ ൌ
1
ݖ ൎ

1
ܥ்݊ߪ

.

The mean free path ߣ of a molecule is the mean path a molecule travels between two
sequential collisions with other molecules:

ߣ ൌ ܥ߬ ൎ
1
்݊ߪ

.

The mean free path does not depend on thermal velocity .ܥ This quantitative result, however, is
valid only for billiard balls – molecules in the form of hard spheres of constant diameter ݀.
The obtained equations for ,ݖ ܼ, ߬, and ߣ are not accurate (sign “ൎ” is used) because we did not
account for real distribution of chaotic velocities of individual molecules. The "accurate" theory,
however, results in equations that are different only by some numerical coefficients. For
instance, the "accurate" theory predicts that the mean free path of gas molecules in the form of
billiard balls of diameter ݀	in the equilibrium state is equal to

ߣ ൌ
1
்݊ߪ2

.

(1.4.6)

(1.4.7)

(1.4.5)

More accurately, ߣ ൌ ∗ݒ߬ , where the
characteristic velocity ∗ݒ is not necessarily
equal to ,ܥ but can be chosen based on
different considerations.
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Example: Basic collision properties in atmospheric air at standard conditions.

For N2, the major component of air, ݀ ൌ 3.7 Å and ݉ ൌ 46.5 · 10ିଶ kg (slide 9) and the gas
constant is equal to

ܴ ൌ
݇
݉ ൌ

1.38 · 10ିଶଷ

46.5 · 10ିଶ ൌ 297	
J

kg · K .

According to the kinetic definition of temperature, Eq. (1.3.11), at standard temperature of
273.15 K:

ܥ ൌ 3ܴܶ ൌ 3
݇
݉ ܶ ൌ 493	

m
s .

Number density at standard conditions is equal to the Loschmidt constant ݊ ൌ 2.6868 ·
10ଶହ		1/mଷ (slide 13). Total collision cross section is equal to ்ߪ ൌ ଶ݀ߨ ൌ 43 · 10 ିଶ m2. Then

Collision frequency of a molecule ݖ ൎ ܥ்݊ߪ ൌ 5.7 · 10ଽ 1/s.

Collision density in a unit volume ܼ ൎ ଵ
ଶ
ܥଶ்݊ߪ ൌ 7.7 · 10ଷସ 1/s/m3.

Mean free time ߬ ൎ ଵ
ఙ

ൌ 0.18 · 10ିଽ s = 0.18 ns

Mean free path ߣ ൎ ଵ
ఙ

ൌ 0.086 · 10ି m = 0.086 µm.

1. Thermal velocity is of the
order of sound speed, ܽ ൌ
ܴܶߛ , where ߛ is the

isentropic index.
2. The smaller ݉, the larger
thermal velocity at fixed
temperature. The highest
thermal velocities at given ܶ
are specific for hydrogen and
helium.
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Equilibrium and relaxation
The major assumption (confirmed by observations) of thermodynamics is that every system (of
molecules) under constant external conditions approaches with time an equilibrium state. The
system stays in equilibrium forever unless external conditions are changed.
We cannot give a kinetic (statistical) definition of the equilibrium state right now, because it can
be done only based on the analysis of statistical distribution of chaotic velocities of individual
molecules in gases. We assume, however, that the kinetic theory must be in agreement with
thermodynamics and any system of gas molecules in time should evolve towards the
equilibrium state.
The process of transition of any volume of gas from arbitrary initial non‐equilibrium state to
equilibrium is called the relaxation. The characteristic time ݐ required to reach the equilibrium
state is called the relaxation time.

 The major (and often the only) physical mechanism leading to
equilibrium are collisions between gas molecules. The relaxation
occurs primarily due to intermolecular collisions.

 The larger number of collisions between molecules, the faster
relaxation and shorter relaxation time, so collisional properties
like ,ݖ ߬, and ߣ can be used to characterize the rate of relaxation.

 For molecules ‐ "billiard balls", equilibrium is established after a
few collisions of every molecule, so that the relaxation time is
usually assumed to be equal to the mean free time: ݐ ൌ ߬

Example of extreme non‐equilibrium state:
One energetic molecule 

surrounded by molecules at rest

Such state cannot exist during long
time: After multiple collisions
between molecules, the initial
energy of the green molecule will be
re‐distributed between all molecules
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Let's consider how collisions can affect properties of non‐homogeneous flows. Any non‐
homogeneous flow has an intrinsic flow length scale(s) ܮ that characterizes the magnitude of
gradients of macroscopic gas parameters.

Knudsen number. Free molecular, transitional, and continuum flow regimes
Knudsen number is the ratio of the characteristic mean free path ∗ߣ to the flow length scale :	ܮ

݊ܭ ൌ
∗ߣ
ܮ

For example, in aerodynamics problems, ܮ is usually chosen to be equal to the characteristic size
of a body, and ∗ߣ is defined by gas parameters in the undisturbed free stream around the body.
	݊ܭ is measure of the importance of intermolecular collisions in the gas flow. Depending on the
value of ,݊ܭ three major regimes of the dilute gas flow can be introduced:

Continuum flow regime Transitional flow regime  Free molecular flow regime 
݊ܭ ≪ 1	 ݊ܭ ൏ 0.03 ሺ0.03	1~݊ܭ ൏ ݊ܭ ൏ 3 െ 10ሻ ݊ܭ ≫ 1	ሺ݊ܭ  3 െ 10ሻ

L

Locally equilibrium flows (CGD) Non‐equilibrium flows (RGD) 

(1.4.8)
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Continuum flow regime is a regime at ݊ܭ ≪ 1, when every molecule is a subject of multiple
collisions inside the flow domain. Usually, in this case the continuity hypothesis is valid and,
moreover, a system of molecules in any R.E.V. is in the state of local equilibrium, since the
number of collisions is so large that it is sufficient for establishing equilibrium in R.E.V. This is the
regime, when the gas flow can be satisfactory described by the continuum gas dynamics.
Transitional flow regime is a regime at ,1~݊ܭ when every molecule participates only in a few
collisions within the flow domain. The overall effect of collisions on the flow is non‐negligible,
but the flow is strongly non‐equilibrium and continuum gas dynamics fails to describe such
flows. Flows in this regime can be described by only the kinetic theory. Most of simulations of
flows in the transitional regime is performed by the Direct Simulation Monte Carlo method.
Free molecular or collisionless flow regime is the regime at ݊ܭ ≫ 1, when collisions are so
infrequent that can be completely neglected. In this case the flow is primarily governed by the
laws of interaction of individual molecules with walls or interfacial boundaries. Such flows are
strongly non‐equilibrium and computed based on the kinetic theory, but many free molecular
flow problems admit theoretical solutions and do not require numerical simulations.
 The ranges of for	݊ܭ every regime shown in the previous slide are approximate: They depend

on ݄݁ݐ problem under consideration and on the adopted choice of ∗ߣ and ܮ in the definition
of Kn. Example: Flow over a sphere. Traditionally ݊ܭ is based on the sphere radius ܮ) ൌ ܴ),
but we can also define ݊ܭ based on the sphere diameter ܮ) ൌ 2ܴ).

 There are flows that cannot be characterized by a single value of ݊ܭ common for the whole
flow. Such flows can include local zones corresponding to different flow regimes.
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Soot nanocluster Atmosphere of Io

3640 km

The degree of flow rarefaction depends not only on the properties of the gas itself (molecule size, number
density, etc.), but it is also essentially determined by the flow length scale. The degree of rarefaction is the
flow property, not the gas property!
In the same gas, e.g., in air at standard conditions, one flow (on the scale of 1~ܮ m, (10ି	~	݊ܭ can be
continuum, while other (on the scale of 1~ܮ µm, (0.1~݊ܭ can be transitional or even free molecular.

These are 
both 

transitional 
flow !
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Local Knudsen number
One of the major example of flows that could not be characterized by a single Knudsen number
is the flow in a free jet expanding into vacuum or low‐pressure background gas. Inside the
nozzle or around it, the flow can be continuum, but then the gas density gradually drops to zero,
so the jet flow field can include the zones of continuum, transitional, and free molecular flow.

A criterion that allows one to distinguish
between zoned with different flow regimes is
called a continuum breakdown criterion.
There are a lot of empirical breakdown
criterions suggested, with the most popular
based on the local Knudsen number

݊ܭ ,ܚ ݐ ൌ
ߣ ,ܚ ݐ
ܪ ,ܚ ݐ ,

where ,ܚሺߣ ሻݐ is the local mean free path
(defined in the point r of the flow field) and
,ܚሺܪ ሻݐ is the local flow length scale that is
often based on the characteristic length scale
of the density variation (density gradient :(݊ߘ

ܪ ൌ
݊
݊ߘ , ݊ߘ					 ൌ

߲݊
ݔ߲ ܑ 

߲݊
ݕ߲ ܒ 

߲݊
ݖ߲ .ܓ

Free molecular

Transitional

Continuumࡷ ൌ . 

normalized density contours ߩ/ߩ

ߩ

݊ܭ ൌ
ߣ
ܦ
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Strong density drop occurs not only in the jet, but also in the diverging part of the Laval nozzle.

Density 
drops in 
more than 
order of 

magnitude
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Relaxation length. Local equilibrium. "Extended" continuity hypothesis

if we consider a small volume of size ,ଷߣ then every molecule travels through this volume during
the relaxation time ߬. And, thus, the total number of collisions in such volume is enough to turn
the system of gas molecules in this volume into the local equilibrium state. Therefore the mean
free path can be considered as the relaxation length, i.e. characteristic length scale of volumes
in the gas flow, where the local equilibrium can be established due to collisions between
molecules. Note, the Eq. (1.4.7) can be re‐written as follows

ߣ ൎ
1
்݊ߪ

ൌ
1

ଶ݊݀ߨ ൌ
݀

ଷ݀݊ߨ ~
݀
߳ ,

where ߳ ൌ ݊݀ଷ is the density parameter. Then let's estimate the number of molecules in :ଷߣ

ܰ ൌ ଷߣ݊ ൌ
݊݀ଷ

߳ଷ ൌ
1
߳ଶ .

Assume that we have a continuum gas flow ߣ) ≪ (ܮ of a dilute gas (߳ ≪ 1, practically ߳ ൏ 10ିଷ).
Then the choice of a R.E.V. size equal to the relaxation length satisfies all requirements to R.E.V:
1. R.E.V. contains many particles (more than 106 according to Eq. (1.4.8)), so that the definition

of macroscopic parameters as volume‐averaged molecular quantities makes sense: It
produces values that do not fluctuate because of chaotic motion of molecules.

2. R.E.V. is small compared to the flow length scale, providing homogeneous distribution of
molecules in R.E.V.

3. Moreover, since the R.E.V. size is in the order of relaxation length, in every R.E.V. gas
molecules are in local equilibrium, so that we can use multiple relationships established,
e.g., in thermodynamics, for equilibrium systems.

(1.4.9)



Thus, we see that in the continuum flow regime of a dilute gas an "extended" continuity
hypothesis, which includes requirements 1, 2, and 3, is valid. Local equilibrium of gas flows in
the continuum flow regime is intensively used in gas dynamics, where the conservation laws
(mass, momentum, and energy equations) are supplied with multiple closure equations
(equations of state, Newton's law for viscous stresses, Fourier's law for heat flux, etc.) that are
necessary to obtained a closed system of equations (a system where the number of unknowns is
equal to the number of equations), but valid only in conditions of local equilibrium.

Summary on the length scales in dilute and dense gases
We introduced four linear (and time) scales of processes in gases: collision length scale ݈, mean
distance between molecules	݈௦, relaxation length – mean free path ,ߣ and flow length scale .ܮ
Depending on the nature of the gas (dense/dilute) and flow regime (continuum/non‐
continuum) we have the following relationships between these scales
In a dense gas  (density parameter ߳ ൌ :(~1	ଷ݀ߨ

݈~݀				~							݈௦~
݀
߳య ~ߣ					~					

݀
߳

In a dilute gas  (density parameter ߳ ൌ ଷ݀ߨ ≪ 1):

݈~݀				 ≪ 						 ݈௦~
݀
߳య 					≪ ~ߣ					

݀
߳

In continuum flows of a dilute gas (߳ ≪ ߣ ,1 ≪ :(ܮ

݈~݀	 ≪ ݈௦~
݀
߳య ≪ ~ߣ

݀
߳ ~݈ோ.ா.. ≪ ܮ
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Gas 
dynamics, 

CFD

Rarefied gas 
dynamics, 
DSMC
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 Processes of transfer of physical quantities
 Fluxes and flux densities of physical quantities
 Convective and collisional transfer of molecular quantities
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1.5. Transfer of molecular quantities
Processes of transfer of physical quantities

Let’s consider some conservative physical quantity Φ, i.e. a
physical quantity which is conserved in a closed physical
system. Examples of conservative quantities: Number of
particles, mass, linear momentum, angular momentum,
energy, etc.

Since such quantity cannot “appear” or “disappear’, a non‐
homogeneous distribution of such physical quantity in space
can evolve only by means of re‐distribution of this physical
quantity in space. Physical processes of re‐distribution of
conservative physical quantities are called the transfer
processes. From the point of view of molecular structure of
matter, all transfer process are related to the motion and
interaction of individual particles (electrons, atoms,
molecules) or propagation of electromagnetic waves.

Example: Diffusion is the mixing of two matters that are
brought in contact with each other. Diffusion is the particle
number transfer process. Non‐reversible mixing occurs as a
result of chaotic motion of molecules. Diffusion happens in
gases (fastest), liquids, and solids (slowest).

Time

Φଵ
Φଶ

Transfer of ΔΦ during Δݐ

Φଵ െ ΔΦ
Φଶ  ΔΦ
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Fluxes and flux densities of molecular quantities
In continuum mechanics we systematically use such macroscopic parameters as fluxes and flux
densities, e.g., heat flux, in order to describe transfer process of various molecular quantities.
For a given surface ܵ and direction specified by the unit normal vector ܖ to the surface, flux
of	ܨ physical quantity Φ is the amount of this quantity which is transferred through surface ܵ
in the direction of ܖ per unit time, .s/[Φ]=[ܨ] For example, energy flux has unit of J/s.
The flux density  of physical quantity Φ is such vector quantity that the flux ܨ݀ through any
surface of infinitesimal area ܣ݀ with unit normal ܖ is equal to ܨ݀ ൌ ܖ · ,ܣ݀ so the flux
density can be considered as the flux of Φ per unit area, .s/m2/[Φ]=[] For example, energy
density flux has unit of J/s/m2.

ܖ

Flux and flux density can be both positive and negative. Negative value of
the flux means that the corresponding physical quantity is preferentially
transferred through surface ܵ in the direction opposite to .ܖ

Surface ܵ

ܣ݀
ܨ݀ ൌ ܖ · ;ܣ݀ flux through infinitesimal area ,ܣ݀

Flux through the whole surface ܵ	is equal to 

ܨ ൌ න ܖ · .ܣ݀
ௌ

This is the 
surface integral 
(see calculus)
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Convective and collisional transfer of molecular quantities
From the point of view of molecular structure of a gas, transport of any physical quantity
through any surface is a result of motion and interaction of individual gas molecules.

Two mechanisms of transfer of molecular quantities:
Free motion of molecules through surface :ࡿ If during time ݐ∆ a molecule (molecule 1) moves
from volume ଵܸ to volume ଶܸ through surface ܵ or vise versa (molecule 2) then amount of
quantity Φ in ଵܸ decreases in ଵܸ and increases in ଶܸ. This mechanisms of transfer of molecular
quantities is called convective. Its contribution to the momentum flux is called kinetic.
Interaction of molecules at different sides of surface :ࡿ Total quantity of Φ in ଵܸ can change
because some molecules in this volume (molecule 3) interact by forces with molecules
(molecule 4) in ଶܸ. This interaction will result in the redistribution Φ between ଵܸ and in ଶܸ
during time ݐ∆ even if molecules do not cross the surface ܵ. This mechanisms of transfer of
molecular quantities is called collisional. Its contribution to the momentum flux is called virial.

Time ݐ

ܖ
Surface ܵ

1

2

3 4

Time ݐ  Δݐ
ܖ

12

3 4

ଵܸ ଶܸ ଵܸ ଶܸ

Interaction between molecules 3 and 4

Free motion of
molecules 1 and 2
through surface ܵ



Value of Δ ܰ can be estimated like value of ∆ܰ in slide 37

Δ ܰ ൌ
ܣݐ∆ܥ݊
6 .

Molecules contribute to collisional transfer if they are located at
different sides of ܵ and participate in collisions. Then Δ ܰ can
be estimated as the total number of collisions occurring in the
layer of thickness 2݀ around surface ܵ:

Δ ܰ ൌ ܼሺ2݀ܣሻΔݐ ൌ ܣݐΔܥଶ்݊݀ߪ ൌ .ܣݐΔܥଷ݊ଶ݀ߨ
Then

Δ ܰ
Δ ܰ

ൌ ߳~ଷ݊݀ߨ6

In a dilute gas, the density parameter is small, ߳ ≪ 1, and
collisional transfer is small compared to the convective one. In
the kinetic theory of dilute gases, collisional transfer is neglected.
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Let’s compare the relative contributions of convective and collisional transfer of molecular
quantities in gas flows.
The rates of change of a conservative quantity due to convective and collisional transfer depend
on the number of molecules that participate in every type of transfer processes. Let’s consider
some planar surface ܵ of area ܣ and estimate the number of molecules that participate in
convective, Δ ܰ, and collisional transfer, Δ ܰ, through ܵ during time Δݐ.

ܵ

ݐΔܥ
ܥ
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1.6. Transfer equation
 Simple transfer equation
 Homogenization of macroscopic parameters as a result of chaotic motion
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1.6. Transfer equation
Simple transfer equation

Let’s obtain a macroscopic transfer equation that describes transfer of some molecular quantity
Φ due to chaotic motion of molecules under conditions when the "extended" continuity
hypothesis is valid.
ݔ

ݔ

Δݔ
Φሺݔ, ሻݐ

Φሺݔ  Δݔሻ

Φሺݔ െ Δݔሻ

Ψሺݔ, ሻݐ

Δݔ

Let’s assume that
 Convective transfer is the only reason for change of

macroscopic gas parameters (no external forces, etc.)
 Transfer occurs in the direction of axis ݔ and divide the

flow into R.E.V. in the form of cubic cells of size Δݔ.
Φሺݔ, ሻݐ is the density ofΦ in the cell with center at .ݔ
Ψ ,ݔ ݐ is the density of flux of Φ that is transferred from
cell ݔ into neighbor cells with centers ݔ  Δݔ and ݔ െ Δݔ.
We assume that in every R.E.V. (every cell) gas is in local
equilibrium, so that Δݔ ൌ ߣ . The total quantity of Φ
transferred from cell ݔ to any neighbor cell during Δݐ is
then equal to

ΔΦ ൌ Ψ ,ݔ ݐ Δߣݐଶ ൌ
1
ߣݐΔܥ6

ଶ݊Φഥ ൌ
1
ߣݐΔܥ6

ଶΦ

Ψ ,ݔ ݐ ൌ
1
.Φܥ6

Cell ݔ
Cell ݔ  Δݔ

and
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1.6. Transfer equation
Then we can write an equation of balance of total amount ofΦ	in cell ݔ during time Δݐ:

ΔݔଷΦ ,ݔ ݐ  Δݐ െ ΔݔଷΦ ,ݔ ݐ ൌ Ψ ݔ  Δݔ, ݐ  Ψ ݔ െ Δݔ, ݐ െ 2Ψ ,ݔ ݐ ΔݔଶΔݐ.

If we divide the equation by ΔݔଷΔݐ, then we get

											
Φ ,ݔ ݐ  Δݐ െ Φ ,ݔ ݐ

Δݐ ൌ െ
Ψ ,ݔ ݐ െ Ψ ݔ  Δݔ, ݐ െ Ψ ݔ െ Δݔ, ݐ െ Ψ ,ݔ ݐ

Δݔ
Here 

݂ ݔ 
Δݔ
2 , ݐ ൌ Ψ ,ݔ ݐ െ Ψ ݔ  Δݔ, ݐ ൌ െ

ߣܥ
6
Φ ݔ  Δݔ െ Φ ݔ

Δݔ

is the density of flux of Φ between cells ݔ and 	ݔ  Δݔ	. Then

Φ ,ݔ ݐ  Δݐ െ Φ ,ݔ ݐ
Δݐ ൌ െ ݂ሺݔ  Δ2/ݔ, ሻݐ െ ݂ሺݔ െ Δ2/ݔ, ሻݐ

Δݔ .

Finally, let's consider Eqs. (1.6.1) and (1.6.2) in the limit when Δݔ → 0 and Δݐ → 0

݂ ൌ െܭ
߲Φ
ݔ߲ , 		 ܭ ൌ

ߣܥ
6 ,

߲Φ
ݐ߲ ൌ െ

߲ ݂
ݔ߲ 												or																

߲Φ
ݐ߲ ൌ

߲
ݔ߲ ܭ

߲Φ
ݔ߲ .

݂  0 if 
transfer of 
Φ occurs in 
the positive 
direction of 

axis ݔ.

(1.6.1)

(1.6.3)

(1.6.4)

(1.6.2)
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1.6. Transfer equation
Eq. (1.6.3) establishes a linear relationship between the flux density of molecular quantity and
gradient of corresponding macroscopic parameter. The sign “‐” in Eq. (1.6.3) means that the
transport of molecular quantity preferentially occurs in the direction opposite to the direction of
the gradient, i.e. from regions where density of Φ is large to regions where density of Φ is small.
Coefficient of proportionally ܭ in Eq. (1.6.3) is called the transfer (transport) coefficient. ܭ is
not a constant, since ܥ depends on ܶ ~ܥ) ܴܶ), and ߣ depends on ݊ and, in general, on ܶ. Thus,
the larger ܶ, the larger ܭ and the rate of the transfer process.
Equation (1.6.4) is the simple transfer equation. It can be applied to study transfer of various
molecular quantities.

The question is: Where did we use in derivation of Eq. (1.6.4) the "extended" continuity
hypothesis?
One can notice that me made a “trick” in derivation of Eq. (1.6.3) from Eq. (1.6.2). Namely, we
first assumed Δݔ ൌ ,ߣ but then considered the case when Δݔ → 0 at fixed :ߣ

ܨ ൌ െ
ߣܥ
6
Φ ݔ  Δݔ െ Φ ݔ

Δݔ ௫→
െ
ߣܥ
6
߲Φ
ݔ߲

This "trick" is in based on the assumption that the "extended" continuity hypothesis is valid. We
cannot arbitrary change ߣ since it is given by physical properties of our flow, but, since ߣ ≪ ,ܮ
we can consider Δݔ as an infinitely small size compared with the flow length scale .ܮ
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1.6. Transfer equation

Let’s solve a boundary value problem for Eq. (1.6.4)
assuming that ܭ ൌ ݐݏ݊ܿ

߲Φ
ݐ߲ ൌ ܭ

߲ଶΦ
ଶݔ߲

with the initial distribution of Φ in the form of a step
function

At	ݐ ൌ 0:								Φሺݔ, 0ሻ ൌ ቊܣ, ݔ  0;
,ܤ ݔ ൏ 0.

Solution takes the form (can be checked by substitution)

Φ ,ݔ ݐ ൌ
ܣ  ܤ
2 

ܣ െ ܤ
2 erf

ݔ
2 ݐܭ

,

where erf ݔ is the error function:

erf ݔ ൌ
2
ߨ
න݁ି௧మ݀ݐ
௫



.

Homogenization of macroscopic parameters as a result of chaotic motion

Φ
ܣ

ܤ

Chaotic motion results in non‐reversible homogenization of initial non‐homogeneous distribution
of macroscopic parameter .ߔ As a result of chaotic motion, quantity ߔ is transferred from
layers with larger ߔ to layers with smaller .ߔ The rate of this process is defined by .ܭ

Limit homogeneous 
distribution at ݐ → ∞

(1.6.5)
ଵݐ ൌ ∗ݐ0.1
ଶݐ ൌ 						 ∗ݐ
ଷݐ ൌ 				 ∗ݐ3
ସݐ ൌ ∗ݐ9				

ݔ
∗ݐܭ



Note that solution in the form of Eq. (1.6.5)
depends not on individual values of ݔ and ,ݐ
but on the variable ߦ ൌ /ݔ .ݐܭ It means
that at any time ,∗ݐ the characteristic linear
scale of the domain ∗ܮ affected by the
transfer of molecular quantity is equal to

∗ܮ ൌ .∗ݐܭ

This equation establishes a simple, but
universal relationship between time , ,∗ݐ and
length , ,∗ܮ scales of the transfer process.
This equation can be used as follows: If we
know that the transfer process through some
boundary occurs during time ∗ݐ , then the
domain around this boundary, where
macroscopic parameters are affected by this
process, has the characteristic size ∗ܮ given by
Eq. (1.6.6).
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1.6. Transfer equation

(1.6.6)

ݔ
∗ݐܭ

Φ
ܣ

ܤ

ଵݐ ൌ ∗ݐ0.1
ଶݐ ൌ 						 ∗ݐ
ଷݐ ൌ 				 ∗ݐ3
ସݐ ൌ ∗ݐ9				

Limit homogeneous 
distribution at ݐ → ∞

ݔ
∗ܮ
ൌ 1
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1.7. Diffusion, viscous drag, and heat conduction
 Diffusion
 Viscous drag
 Heat conduction
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1.7. Diffusion, viscous drag, and heat conduction
Diffusion

Diffusion in gases is the physical process of redistribution of number of molecules by means of
preferential motion of molecules from regions where molecules more abundant to regions
where they are less abundant due to chaotic motion of molecules. In the important case of
binary diffusion, two different gases are mixing with each other. Binary diffusion cannot be
considered based on the simple transfer equation, because it was derived for a gas composed of
identical molecules. Let’s apply the transfer equation

߲Φ
ݐ߲ ൌ െ

߲ ݂
ݔ߲ , 				 ݂ ൌ െܭ

߲Φ
ݔ߲ , 		 ܭ ൌ

ߣܥ
6

in order to describe self‐diffusion, e.g. homogenization of distribution of number density in a
gas of identical molecules. We consider Φ ൌ 1, Φഥ ൌ 1, and assume that there is a non‐
homogeneous distribution of number density Φ ൌ ݊ሺݔ, ሻݐ along axis .ݔ Then the number flux
density in ݔ direction is given by the equation

௫ܬ ൌ െܦ
߲݊
ݔ߲ ,

where

ܦ ൌ
ߣܥ
6 ൌ

3
ߨ6

1
்ߪ

1
݊

݇
݉ ܶ~

ܶ
݊

is called the self‐diffusivity or self‐diffusion coefficient. 

ݔ

ݕ

݊	ሺݔ, ሻݐ
Layer where 

molecules are more 
abundant

Layer where 
molecules are less 

abundant

Direction of 
preferential 
transfer of 

molecules due to 
their chaotic 

motion

(1.7.1)

(1.7.2)
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1.7. Diffusion, viscous drag, and heat conduction
The transfer equation takes the form

߲݊
ݐ߲ ൌ െ

௫ܬ߲
ݔ߲ 							or											

߲݊
ݐ߲ ൌ

߲
ݔ߲ ܦ

߲݊
ݔ߲

and is called the diffusion equation. The linear relationship between the diffusion flux density ௫ܬ
and gradient of number density of molecules given by Eq. (1.7.1) is called Fick's law of diffusion.
It was first established experimentally. We showed that this experimental law in gases is
explained by the chaotic motion of molecules.
Eq. (1.7.2) is not accurate, but predicts correct functional dependence of ܦ on ݊ and ܶ: The
“accurate" kinetic theory predicts that for gas composed of hard sphere (HS) molecules

ܦ ൌ
3 ߨ
ߨ8

1
்ߪ

1
݊

݇
݉ ܶ.

The experiments show that the (self‐)diffusion coefficient varies as a function of ݊ and ܶ as

~ܦ
ܶఈ

݊ ,
where exponent ߙ can be different from ½. The “accurate” kinetic theory shows that the
dependence of ܦ on ܶ is determined by the model of interaction between gas molecules.
Models that are more sophisticated that the HS model can accurately predict Eq. (1.7.5).
Note: In the kinetic theory, self‐diffusion has a limited importance (contrary to diffusion of
different species) and usually considered as a limit case of binary diffusion of two gases with
similar݉ and .்ߪ

(1.7.3)

(1.7.4)

(1.7.5)



߬௫௬ ൌ െߤ
௬ݑ߲
ݔ߲

is called the shear stress and

ߤ ൌ
ߣܥ
6 ݉݊ ൌ

1
2 3

݉
்ߪ

݇
݉ ܶ~ ܶ

is called the (dynamic) (shear) viscosity (coefficient). Transfer 
equation takes the form 

߲
ݐ߲ ௬ݑߩ ൌ െ

߲߬௫௬
ݔ߲ 							or

߲
ݐ߲ ௬ݑߩ ൌ

߲
ݔ߲ ߤ

௬ݑ߲
ݔ߲
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1.7. Diffusion, viscous drag, and heat conduction
Viscous drag

Viscosity of a fluid (informally) is ability of fluid to resist the shear load. Viscous drag in gases is
the physical process of redistribution of angular momentum in the direction perpendicular to
the flow velocity from layers with higher gas velocity to layers with smaller gas velocity. Let’s
apply the transfer equation

߲Φ
ݐ߲ ൌ െ

߲ ݂
ݔ߲ , 				 ݂ ൌ െܭ

߲Φ
ݔ߲ , 		 ܭ ൌ

ߣܥ
6

in order to describe viscous drag. We consider Φ ൌ ݉ݒ௬, then Φഥ ൌ ௬ݑ݉ and Φ ൌ ݊Φഥ ൌ
,௬ݑߩ and assume that there is a non‐homogeneous distribution of ,ݔ௬ሺݑ ሻݐ along axis ,ݔ while
݊	 ൌ .ݐݏ݊ܿ	 Then the flux density ߬௫௬ of component‐ݕ of angular momentum through a surface
normal to axis ݔ is given by the equation

(1.7.6)

(1.7.7)

(1.7.8)

ݔ

ݕ

Faster moving layer

Slower moving layer

Direction of 
preferential 
transfer of 

momentum 
due to 
chaotic 

motion of 
molecules

,ݔሺ	௬ݑ ሻݐ

Shear force that
decelerates top layer

Shear force that
accelerates bottom layer
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1.7. Diffusion, viscous drag, and heat conduction
and is called the viscous drag equation. 
The shear stress ߬௫௬ has unit of kg∙(m/s)/s/m2 = N/m2 = Pa since this is a force (flux of linear
momentum) per unit area. The quantity ߬௫௬ characterizes the tangential or shear force applied
to a unit area on a surface with normal along axis ݔ and acting along axis .ݕ The linear
relationship between the shear stress and gradient of macroscopic velocity, Eq. (1.7.6), is known
as Newton's law of viscosity. It was first established experimentally. We showed that this
experimental law in gases is explained by the chaotic motion of molecules.
Eq. (1.7.6) establishes two important facts about the viscosity coefficient:
1. Viscosity of dilute gases does not depend on number density. This fact is in accurate

agreement with experiments.
2. Viscosity is proportional to ܶଵ/ଶ. Experimentally, it is know that the dependence of viscosity

on temperature in some limited range of temperature can be well‐approximated by the
power law

ߤ ܶ ൌ ߤ
ܶ
ܶ

ఠ

,

where the viscosity index ߱ varies between 1/2 and 1 with values 1/2 specific for higher ܶ	and
1 for lower ܶ. The “accurate” kinetic theory predicts that value ߱ ൌ 1/2 is specific only for hard
sphere molecules with the accurate value of viscosity equal to

ߤ ൌ
5 ߨ
16

݉
்ߪ

݇
݉ ܶ.

(1.7.9)

(1.7.10)
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1.7. Diffusion, viscous drag, and heat conduction
The “accurate” kinetic theory also shows that the value of the viscosity index ߱ in Eq. (1.7.9) is
defined by the adopted molecular model of interatomic collisions (Chapter 2). By using more
sophisticated molecular models than the model of hard sphere molecules, it is possible to
theoretically obtain the viscosity of gases varying as ~ܶఠ and to bring the theory in accurate
agreement with results of experimental measurements.
If viscosity of gases is known at some particular temperature, then one can use Eq. (1.7.9) in
order to find the collision cross section ்ߪ ൌ ଶ݀ߨ and gas kinetic diameter ݀. This approach is
systematically used in the kinetic theory in order to find ݀.
Viscosity and shear stresses in gases can be studies theoretically by considering a standard
problem of flow between two parallel solid walls moving with respect to each other. The steady‐
state flow occurring in this problem in the gap between walls is called the Couette flow.

Solid wall at rest

Moving wall

Shear stress ߬௫௬
applied to the top 

wall

Shear stress ߬௫௬
applied to the 
bottom wall

ሻݔ௬ሺݑ

ݔ

ݕ



௫ݍ ൌ െߢ
߲ܶ
ݔ߲ ,

is called the heat flux density and

ߢ ൌ
ߣܥ
6 ݉݊

3
2
݇
݉ ൌ ~ܿߤ ܶ

is called the thermal conductivity (coefficient). The 
transfer equation takes the form 
߲
ݐ߲ ܶܿߩ ൌ െ

௫ݍ߲
ݔ߲ 							or											

߲
ݐ߲ ܶܿߩ ൌ

߲
ݔ߲ ߢ

߲ܶ
ݔ߲ .
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1.7. Diffusion, viscous drag, and heat conduction
Heat conduction

Heat conduction or heat transfer in gases is the physical process of redistribution of internal
energy from hotter to colder regions due to chaotic motion of molecules. Let’s apply the
transfer equation

߲Φ
ݐ߲ ൌ െ

߲ ݂
ݔ߲ , 				 ݂ ൌ െܭ

߲Φ
ݔ߲ , 		 ܭ ൌ

ߣܥ
6

in order to describe heat conduction. We consider Φ ൌ ݉܋ଶ/2 ൌ ݉ܞଶ/2 (no bulk velocity),
then Φഥ ൌ ଶ/2ܥ݉ ൌ ሺ3/2ሻ݇ܶ	(see Eq. (1.3.11)) and Φ ൌ ݊Φഥ ൌ 3/2 ݊݇ܶ ൌ ,ܶܿߩ and
assume that there is a non‐homogeneous distribution of temperature ܶሺݔ, ሻݐ along axis ,ݔ while
there is only minor inhomogeneity of ݊, so ݊	 ൌ ݐݏ݊ܿ	 (see the comment on slide 78). Then the
energy flux density in ݔ direction, ,௫ݍ given by the equation

ܿ ൌ
3
2
݇
݉

(1.7.11)

(1.7.12)

(1.7.13)

ݔ

ݕ

Hotter layer

Colder layer

Direction of 
preferential 
transfer of 
energy due 
to chaotic 
motion of 
molecules

ܶሺݔ, ሻݐ



and is called the heat conduction equation. 
The heat flux density ߬௫௬ has unit of J/s/m2 = W/s . The linear relationship between the heat flux
density and gradient of temperature, Eq. (1.7.11) is known as Fourier’s law of heat conduction.
It was first established experimentally. We showed that this experimental law in gases is
explained by the chaotic motion of molecules.
Eq. (1.7.12) establishes two important facts that are in agreement with experiments:
1. Thermal conductivity of gases does not depend on number density
2. Thermal conductivity is proportional to viscosity i.e. varies with temperature as the viscosity 

does. Experiments show that the Prandl number

ݎܲ ൌ
ܿߤ
 ߢ ,

where ܿ is the specific heat at constant pressure (ܿ ൌ ሺ5/2ሻܴ for a monatomic gas), in a
“reasonable” range of ܶ is independent of temperature and its value for many gases is about
2/3. Then ߢ varies with temperature as ߤ in Eq. (1.7.9), i.e. ߢ ൌ ߢ ܶ/ ܶ

ఠ.
Our elementary theory fails to predict the accurate value of Pr. The "accurate" kinetic theory
shows that for any monatomic gas ݎܲ ൌ 2/3, and thus

ߢ ൌ
3
2 ܿߤ.

In particular, for hard sphere molecules (use Eq. (1.7.10)),

ߢ ൌ
75 ߨ
64

݇
்ߪ

݇
݉ ܶ.
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1.7. Diffusion, viscous drag, and heat conduction

(1.7.14)

(1.7.15)

(1.7.16)
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1.7. Diffusion, viscous drag, and heat conduction
The “standard” test problem for heat
conduction is the steady‐state heat
conduction in a gas between two
parallel planes at fixed temperatures ଵܶ
and ଶܶ.
This problem allows one to illustrate the
principal difference between transfer
processes in continuum and free
molecular flow regime.
In free molecular flow, the temperature
is constant because the flow is formed
by two homogeneous streams of
molecules that do not interact with each
other: Stream of molecules moving
from bottom to top and equilibrated
with the bottom wall at temperature ଶܶ
and stream of molecules moving from
the top to the bottom and equilibrated
with the top wall at ଵܶ . Without
collisions, energy between these two
streams is not equilibrated.

ଵܶ

ଶܶ

݊ܭ ൌ ܮ/ߣ ≪ 1

Distribution ܶሺݔሻ
given by condition

௫ݍ ൌ ݐݏ݊ܿ

ݔ ଵܶ

ଶܶ

݊ܭ ൌ ܮ/ߣ ≫ 1

Constant ܶ

ݔ

ܮ

Temperature jump: 
Difference between 
surface temperature 
and gas temperature

In heat conduction problem,
the gas density ݊ is not a
constant, since for the
mechanical equilibrium (no
bulk velocity and
macroscopic flow) pressure
should be constant across
domain, i.e. ݊ሺݔሻ is given by
the condition

 ൌ ݊ ݔ ݇ܶ ݔ ൌ 	.ݐݏ݊ܿ
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1.8. Appendix: Probability and Bernoulli trial
 Random outcome and event. Sure and impossible events
 Union and intersection of events. Compliment, and mutually exclusive events
 Statistical definition of probability of a random event
 Calculation of probabilities
 Dependent and independent random events. Conditional probability
 Bernoulli trial
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1.8. Appendix: Probability and Bernoulli trial
Let's assume that we consider some stochastic system, process, or phenomenon that can be
repeated many times in identical conditions.
 The elementary event or outcome ܣ is the random output of any individual observation or

measurement.
 The event ܣ is an arbitrary set of possible outcomes.
 The sure event Ω is the event that includes all possible outcomes.
 The impossible event ∅ is an event that has no chance to occurring. It includes neither of the

outcomes.
Example: Playing die
Stochastic process (experiment): Rolling the die and registering
the number of dots ܰ	on the top face.
Outcome: The number of dots ܰ on the top face after
individual rolling of the die.
Possible outcomes:
ଵܣ ൌ ܰ ൌ 1 , ଶܣ ൌ ܰ ൌ 2 , ..., ܣ ൌ ܰ ൌ 6
Examples of events:
	ܣ ൌ 	 ሼ	ܰ	 ൌ 1	or	ܰ	 ൌ 	5	ሽ	
	ܤ ൌ 	 ሼ	ܰ	 ൌ 	1	and	ܰ  4	ሽ 	ൌ 	 ሼܰ	 ൌ 	1	or	ܰ	 ൌ 5	or	ܰ	 ൌ 6ሽ
Ω ൌ ሼܰ ൌ 1	or	ܰ ൌ 2	or	 … or	ܰ ൌ 5	or	ܰ ൌ 6	ሽ
∅ ൌ ሼܰ ൏ 1	or	ܰ  6ሽ



ME 591, Non‐equilibrium gas dynamics, Alexey Volkov 81

1.8. Appendix: Probability and Bernoulli trial
 Every elementary event is an element (point) of Ω.
 Every event is a subset of points of Ω.
 It is illustrative to use Venn diagrams to demonstrate the relationship between the sure

event, elementary events, and various other events.

 A union ܣ ∪ ܤ of two events ܣ and ܤ is the event which happens if ܣ or ܤ happen.

Sure event Ω, full set, full area 

Event ܣ = subset, subarea
Elementary event,
outcome, point ܣ

ܣ
ܤ

ܣ ∪ ܤ

Example: Playing die

ܣ ൌ ሼܰ ൌ 1	or	ܰ	 ൌ 	2ሽ

ܤ ൌ 	 ሼܰ ൌ 2	or	ܰ ൌ 6ሽ

	ܥ ൌ 	 ሼܰ	 ൌ 	5ሽ

ܣ ∪ ܤ ൌ ܰ ൌ 1	or	ܰ ൌ 2	or	ܰ ൌ 6

ܣ ∪ ܥ ൌ ሼܰ ൌ 1	or	ܰ ൌ 2	or	ܰ ൌ 5ሽ
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1.8. Appendix: Probability and Bernoulli trial
 An intersection ܣ ∩ ܤ of two events ܣ and ܤ is the event which happens if ܣ and ܤ happen

simultaneously.

 Event ′ܣ is called compliment to event ܣ if ܣ ∪ ′ܣ ൌ Ω and ܣ ∩ ′ܣ ൌ ∅ .

 Events ܣ and ܤ are calledmutually exclusive if ܣ ∩ ܤ ൌ ∅.

ܣ
ܤ

Example: Playing die

ܣ ൌ ሼܰ ൌ 1	or	ܰ	 ൌ 	2ሽ

ܤ ൌ 	 ሼܰ ൌ 2	or	ܰ ൌ 6ሽ

	ܥ ൌ 	 ሼܰ	 ൌ 	5ሽ

ܣ ∩ ܤ ൌ 	ܰ ൌ 2	

ܣ ∩ ܥ ൌ ∅

′ܣ ൌ ሼܰ ൌ 3	or	ܰ	 ൌ 4	or	ܰ	 ൌ 6	or	ܰ	 ൌ 6ሽ

ܣ ∩ ܤ

′ܣ
ܣ ܣ

ܤ

ܣ and ܤ are mutually exclusive ܣ′ is compliment to ܣ



Simple rules for random events

 ᇱܣ ᇱ ൌ ܣ

 ܣ ∪ ܤ ൌ ܤ ∪ ,ܣ ܣ ∩ ܤ ൌ ܤ ∩ ܣ

 ܣ ∪ ܤ ∪ ܥ ൌ ሺܣ ∪ ሻܤ ∪ ܥ

 ܣ ∩ ܤ ∪ ܥ ൌ ܣ ∩ ܤ ∪ ܣ ∩ ܥ

 ܣ ∪ ܤ ᇱ ൌ ᇱܣ ∪ ,ᇱܤ ܣ ∩ ܤ ′ ൌ ′ܣ ∩ ′ܤ

 ܣ ∪ ܣ ൌ ,ܣ ܣ ∩ ܣ ൌ ܣ

 ܣ ∪ Ω ൌ Ω, ܣ ∩ Ω ൌ ܣ

 ܣ ∪ ∅ ൌ ,ܣ ܣ ∩ ∅ ൌ ∅

Probability of a random event

Probability of a random event ܣ is a numerical measure of our degree of confidence that the
event ܣ happen during a single outcome (experiment, measurement) of the considered
stochastic system (process, phenomenon).

There are at least four different definitions of probability. We will use only an intuitively clear,
statistical definition of probability.

ܥ
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ܣ
ܤ

All these rules can be easily proved with Venn diagrams.



Let's assume that we repeat our observation (experiment) ܰ times (ܰ ≫ 1) independently from
each other, but in identical conditions and random event ܣ happened ܰሺܣሻ times among ܰ.

Probability ܲሺܣሻ of event ܣ is the relative frequency of this event among others, calculated in
the limit ܰ → ∞:

ܲ ܣ ൌ lim
ே→ஶ

ܰሺܣሻ
ܰ

Simple properties of probability drawn from the fact that ܰ ܣ  ܰ for any random event:

 0  ܲሺܣሻ  1.
 ܲ ∅ ൌ 0	, because ܰሺ∅ሻ ൌ 0.
 ܲ Ω ൌ 1, because ܰሺΩሻ ൌ ܰ.
 If ܣ ⊂ ,ܤ then ܲሺܣሻ  ܲሺܤሻ, because ܰ ܣ  ܰሺܤሻ.
 If ܣ and ܤ are mutually exclusive events ܣ) ∩ ܤ ൌ ∅), the probability of a union is equal to

the sum of probabilities (summation rule):
ܲ ܣ ∪ ܤ ൌ ܲ ܣ  ܲሺܤሻ

because for mutually excusive events ܰሺܣ ∪ ሻܤ ൌ ܰሺܣሻ  ܰሺܤሻ.
 Since ܣ ∪ ᇱܣ ൌ Ω, ܣ ∩ ᇱܣ ൌ ∅, then ܲ Ω ൌ ܲ ܣ  ܲሺܣᇱሻ and ܲ ᇱܣ ൌ 1 െ ܲሺܣሻ .
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ܣ
ܤ

(1.8.1)

(1.8.2)



Independent events and conditional probability

The conditional probability ܲሺܤ|ܣሻ is the probability of event ܣ calculated under the condition
that event ܤ occurs. This probability accounts for the fact that occurrence of event ܤ changes
probability of event :ܣ

or
ܲ ܣ ∩ ܤ ൌ ܲ ܣ ܤ ܲ ܤ ൌ ܲ ܤ ܣ ܲሺܣሻ

It is reasonably to call two random events ܣ and ܤ independent if the happening of one of
these event does not affect the probability of occurrence of another, i.e. if ܲ ܤ|ܣ ൌ ܲሺܣሻ and
ܲ ܣ|ܤ ൌ ܲሺܤሻ.

In order to draw Eq. (1.8.3), ܤ has to occur, i.e. ܲሺܤሻ ് 0.

Then for independent events ܣ and ܤ we have themultiplication rule:

ܲ ܣ ∩ ܤ ൌ ܲሺܣሻܲ ܤ ⟺ ܣ and ܤ are independent

The main purpose of the probability theory is to formulate rules that allow us to calculate
probabilities of complex events based on known probabilities of simple events.
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ܲ ܤ|ܣ ൌ lim
ே→ஶ

ܰሺܣ ∩ ሻܤ
ܰሺܤሻ ൌ lim

ே→ஶ

ܰሺܣ ∩ ܰ/ሻܤ
ܰሺܤሻ/ܰ ൌ

ܲሺܣ ∩ ሻܤ
ܲሺܤሻ

(1.8.3)

(1.8.4)

(1.8.5)
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Example: Non‐independent events

Eq. (5.2.3)

Solution: We consider the events:
 First drawn screw nondefective :ܣ
 Second drawn screw nondefective :ܤ

Two possible scenario:
1. The second screw is drawn with replacement: We put the 

first screw back to the box and then draw the second one. 
ܣ and ܤ are independent.

2. The second screw is drawn without replacement: We draw 
the second from 9 screws in the box. ܣ and ܤ are 
dependent.



The previous example falls into general category of problems known as Bernoulli trial that can
be solved with or without replacement. We will consider the Bernoulli trial with replacement.

Bernoulli trial with replacement
A Bernoulli trial (or binomial trial) is a random experiment or test with exactly two possible
outcomes, "success" and "failure", in which the known probability of success is the same every
time the experiment is conducted.
Two elementary events (outcomes): ,ଵܣ .ଶܣ The sure event Ω ൌ ሼܣଵ, ܣଶ}
Two known probabilities of every outcome:  ൌ ܲሺܣଵሻ, ݍ ൌ ܲ ଶܣ ൌ 1 െ .
Example 1: Rolling die. ଵܣ ൌ ሼܰ ൌ 6ሽ, ଶܣ ൌ 1  ܰ  5 ,  ൌ 1/6, ݍ ൌ 5/6.
Example 2: A pile of ܮ grey andM red balls. We pick up
at random one ball from the pile, determine its color and
return the ball to the pile.
ଵܣ ൌ Ball	is	gray, ܲ ଵܣ ൌ  ൌ ܮሺ/ܮ  .ሻܯ
ଶܣ ൌ Ball	is	red, ܲ ଶܣ ൌ ݍ ൌ ܮሺ/ܯ ܯሻ ൌ 1 െ .

This is the Bernoulli trial with replacement, since every
test is performed in the same conditions (We determine
color and return ball to the pile).
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Assume that we performed the test ݊ times. The major question in the Bernoulli trial is:
What is the probability ܲሺ݇ሻ of choosing ݇ (0  ݇  ݊) grey balls after ݊ test?
First let's consider an example when ݊ ൌ 3 and calculate ܲሺ1ሻ.
In three sequential tests we can chose 1 grey ball as follows

Since events 2ܣ ,1ܣ, and 3ܣ are mutually excusive, one can use the summation rule:
ܲ 1 ൌ ܲ 1ܣ ∪ 2ܣ ∪ 3ܣ ൌ ܲ 1ܣ  ܲ 2ܣ  ܲ 3ܣ ൌ ଵଵ3 1 െ ଵ ଶ

In the general case (arbitrary ݊ and ݇) one can obtain:

ܲሺ݇ሻ ൌ ݊
݇  1 െ  ି

where the integer value denoted as
݊
݇ is called the binomial coefficient and is equal to the

number of different events with ݇ grey balls drawn in ݊ tests
݊
݇ ൌ

݊!
݇! ݊ െ ݇ !

In our example (݊ ൌ 3 and ݇ ൌ 1),   31 ൌ ଷ!
ଵ! ଷିଵ !

ൌ ଷ·ଶ·ଵ
ଵ·ଶ·ଵ

ൌ 3.

Event Test 1 Test 2 Test 3 Probability (all tests in a sequence are independent)

Event 1ܣ Grey Red Red ܲ 1ܣ ൌ ݍݍ ൌ  1 െ  ି

Event 2ܣ Red Grey Red ܲ 2ܣ ൌ ݍݍ ൌ  1 െ  ି

Event 3ܣ Red  Red Grey ܲ 3ܣ ൌ ݍݍ ൌ  1 െ  ି

(1.8.6)


